{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,11]],"date-time":"2025-01-11T02:10:29Z","timestamp":1736561429239,"version":"3.32.0"},"reference-count":60,"publisher":"Elsevier BV","issue":"3","license":[{"start":{"date-parts":[[2006,11,1]],"date-time":"2006-11-01T00:00:00Z","timestamp":1162339200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2006,11]]},"DOI":"10.1016\/j.artmed.2006.07.008","type":"journal-article","created":{"date-parts":[[2006,9,28]],"date-time":"2006-09-28T12:34:43Z","timestamp":1159446883000},"page":"291-303","source":"Crossref","is-referenced-by-count":6,"title":["Cell-nuclear data reduction and prognostic model selection in bladder tumor recurrence"],"prefix":"10.1016","volume":"38","author":[{"given":"Dimitris K.","family":"Tasoulis","sequence":"first","affiliation":[]},{"given":"Panagiota","family":"Spyridonos","sequence":"additional","affiliation":[]},{"given":"Nicos G.","family":"Pavlidis","sequence":"additional","affiliation":[]},{"given":"Vassilis P.","family":"Plagianakos","sequence":"additional","affiliation":[]},{"given":"Panagiota","family":"Ravazoula","sequence":"additional","affiliation":[]},{"given":"Georgios","family":"Nikiforidis","sequence":"additional","affiliation":[]},{"given":"Michael N.","family":"Vrahatis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.artmed.2006.07.008_bib1","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/S0090-4295(03)00329-7","article-title":"Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer","volume":"62","author":"Kelloniemi","year":"2003","journal-title":"Adult Urol"},{"issue":"5","key":"10.1016\/j.artmed.2006.07.008_bib2","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S1078-1439(00)00077-6","article-title":"The value of histopathological prognostic factors in superficial bladder cancer: Do we need more","volume":"5","author":"Witjes","year":"2000","journal-title":"Urol Oncol"},{"key":"10.1016\/j.artmed.2006.07.008_bib3","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1016\/S0022-5347(05)67948-7","article-title":"Neural network analysis of clinicopathological and molecular markers in bladder cancer","volume":"163","author":"Qureshi","year":"2000","journal-title":"J Urol"},{"issue":"12","key":"10.1016\/j.artmed.2006.07.008_bib4","doi-asserted-by":"crossref","first-page":"2078","DOI":"10.1002\/1097-0142(19870615)59:12<2078::AID-CNCR2820591219>3.0.CO;2-P","article-title":"The sensitivity of flow cytometry compared with conventional cytology in the detection of superficial bladder carcinoma","volume":"59","author":"Badalament","year":"1987","journal-title":"Cancer"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib5","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1002\/1097-0142(19820101)49:1<109::AID-CNCR2820490122>3.0.CO;2-Y","article-title":"Flow cytometry of low stage bladder tumors: correlation with cytologic and cystoscopic diagnosis","volume":"49","author":"Devonec","year":"1982","journal-title":"Cancer"},{"issue":"8","key":"10.1016\/j.artmed.2006.07.008_bib6","first-page":"806","article-title":"Quantitative assessment of bladder cancer by nuclear texture analysis using automated high resolution image cytometry","volume":"12","author":"Gschwendtner","year":"1999","journal-title":"Mod Pathol"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib7","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1002\/(SICI)1097-0142(19990701)86:1<105::AID-CNCR15>3.0.CO;2-F","article-title":"Quantitative assessment of bladder carcinoma by acid labile dna assay","volume":"86","author":"Gschwendtner","year":"1999","journal-title":"Cancer"},{"key":"10.1016\/j.artmed.2006.07.008_bib8","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/S0302-2838(01)00026-4","article-title":"Guidelines on bladder cancer","volume":"41","author":"Oosterlink","year":"2002","journal-title":"Eur Urol"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib9","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/S1569-9056(03)80764-9","article-title":"Use of artificial neural network to predict the early recurrence of superficial bladder cascer","volume":"2","author":"Lynn","year":"2003","journal-title":"Eur Urol Suppl"},{"key":"10.1016\/j.artmed.2006.07.008_bib10","series-title":"Proceedings of the 19th international conference-IEEE\/EMBS","article-title":"Neural network analysis of prognostic markers in bladder cancer","author":"Naguib","year":"1997"},{"issue":"2","key":"10.1016\/j.artmed.2006.07.008_bib11","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1080\/1463923021000043723","article-title":"A computer-based diagnostic and prognostic system for assessing urinary bladder tumour grade and predicting cancer recurrence","volume":"27","author":"Spyridonos","year":"2002","journal-title":"Med Inform Internet Med"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib12","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1111\/j.1048-891x.2004.14031.x","article-title":"Nuclear size, shape and density in endometrial carcinoma: relationship to survival at over 5 years of follow-up. Does analyzing only cells occupying the g0\u2212g1 peak and useful information?","volume":"14","author":"Miller","year":"2004","journal-title":"Int J Gynecol Cancer"},{"issue":"5","key":"10.1016\/j.artmed.2006.07.008_bib13","first-page":"373","article-title":"Validation of nuclear texture, density, morphometry and tissue syntactic structure analysis as prognosticators of cervical carcinoma","volume":"22","author":"Weyn","year":"2000","journal-title":"Anal Quant Cytol Histol"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib14","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1046\/j.1365-2818.2000.00594.x","article-title":"Wavelets as chromatin texture descriptors for the automated identification of neoplastic nuclei","volume":"197","author":"van de Wouwer","year":"2000","journal-title":"J Microsc"},{"key":"10.1016\/j.artmed.2006.07.008_bib15","doi-asserted-by":"crossref","first-page":"2134","DOI":"10.1016\/S0022-5347(05)66984-4","article-title":"Identification by quantitative chromatin pattern analysis of patients at risk for recurrence of superficial transitional bladder carcinoma","volume":"164","author":"van Velthoven","year":"2000","journal-title":"J Urol"},{"issue":"2","key":"10.1016\/j.artmed.2006.07.008_bib16","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.artmed.2004.08.003","article-title":"Neural network predictions of significant coronary artery stenosis in men","volume":"34","author":"Mobley","year":"2005","journal-title":"Artif Intell Med"},{"issue":"3","key":"10.1016\/j.artmed.2006.07.008_bib17","first-page":"538","article-title":"Application of neural networks in medicine\u2014a review","volume":"4","author":"Papik","year":"1998","journal-title":"Med Sci Monitor"},{"key":"10.1016\/j.artmed.2006.07.008_bib18","series-title":"Machine learning: proceedings of the 15th international conference","article-title":"A neural network model for prognostic prediction","author":"Street","year":"1998"},{"issue":"9","key":"10.1016\/j.artmed.2006.07.008_bib19","first-page":"957","article-title":"Neural network processing of cervical smears can lead to a decrease in diagnostic variability and an increase in screening efficacy: a study of 63 false-negative smears","volume":"7","author":"Boon","year":"1994","journal-title":"Mod Pathol"},{"issue":"2","key":"10.1016\/j.artmed.2006.07.008_bib20","first-page":"101","article-title":"Automated grading of astrocytomas based on histomorphometric analysis of ki-67 and feulgen stained paraffin sections. classsification results of neuronal and discriminant analysis","volume":"8","author":"Kolles","year":"1995","journal-title":"Anal Cell Pathol"},{"key":"10.1016\/j.artmed.2006.07.008_bib21","series-title":"Lecture notes in artificial intelligence, vol. 943","article-title":"Evaluating a neural network decision-support tool for the diagnosis of breast cancer","author":"Downs","year":"1995"},{"key":"10.1016\/j.artmed.2006.07.008_bib22","series-title":"Eighth international conference on artificial neural networks","article-title":"Adapting an ensemble approach for the diagnosis of breast cancer","author":"Sharkey","year":"1998"},{"issue":"2","key":"10.1016\/j.artmed.2006.07.008_bib23","first-page":"77","article-title":"Image analysis and machine learning applied to breast cancer diagnosis and prognosis","volume":"17","author":"Wolberg","year":"1995","journal-title":"Anal Quant Cytol Histol"},{"issue":"4","key":"10.1016\/j.artmed.2006.07.008_bib24","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/0933-3657(95)00044-5","article-title":"Application of the fuzzy artmap neural network model to medical pattern classification tasks","volume":"8","author":"Downs","year":"1996","journal-title":"Artif Intell Med"},{"year":"1981","series-title":"Pattern recognition with fuzzy objective function algorithms","author":"Bezdek","key":"10.1016\/j.artmed.2006.07.008_bib25"},{"key":"10.1016\/j.artmed.2006.07.008_bib26","series-title":"The IASTED international conference on parallel and distributed computing and networks","article-title":"Unsupervised distributed clustering","author":"Tasoulis","year":"2004"},{"key":"10.1016\/j.artmed.2006.07.008_bib27","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1006\/jcom.2001.0633","article-title":"The new k-windows algorithm for improving the k-means clustering algorithm","volume":"18","author":"Vrahatis","year":"2002","journal-title":"J Complexity"},{"issue":"3","key":"10.1016\/j.artmed.2006.07.008_bib28","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1080\/14639230110065757","article-title":"Computer-based grading of heamatoxylin-eosin stained tissue sections of urinary bladder carcinomas","volume":"26","author":"Spyridonos","year":"2001","journal-title":"Med Inform Internet Med"},{"issue":"6","key":"10.1016\/j.artmed.2006.07.008_bib29","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","volume":"3","author":"Harralick","year":"1973","journal-title":"IEEE Trans Syst, Man Cybernet"},{"key":"10.1016\/j.artmed.2006.07.008_bib30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0022-5347(17)36494-7","article-title":"Review article. Quantitative light microscopy in urological oncology","volume":"148","author":"der Poel","year":"1992","journal-title":"J Urol"},{"key":"10.1016\/j.artmed.2006.07.008_bib31","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1002\/path.1711730306","article-title":"Computer-assisted chromatin texture characterization of feulgen-stained nuclei in a series of 331 transitional bladder cell carcinomas","volume":"173","author":"van Velthoven","year":"1994","journal-title":"J Pathol"},{"key":"10.1016\/j.artmed.2006.07.008_bib32","series-title":"Proceedings of digital image computing: techniques and applications","article-title":"Cervical cell classification via co-occurrence and markov random field features","author":"Walker","year":"1995"},{"issue":"8","key":"10.1016\/j.artmed.2006.07.008_bib33","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1016\/0031-3203(92)90036-I","article-title":"Performance evaluation for four classes of textural features","volume":"25","author":"Ohanian","year":"1992","journal-title":"Pattern Recogn"},{"key":"10.1016\/j.artmed.2006.07.008_bib34","first-page":"327","article-title":"Grading of transitional cell bladder carcinoma by texture analysis of histological sections","volume":"6","author":"Choi","year":"1994","journal-title":"Anal Cell Pathol"},{"key":"10.1016\/j.artmed.2006.07.008_bib35","unstructured":"Walker R, Jackway P, Longstaff I. Improving co-occurrence matrix feature discrimination. In: Maeder A, Lovell B, editors. Digital image computing: techniques and applications. Brisbane, Australia; 1995, p. 643\u20138."},{"key":"10.1016\/j.artmed.2006.07.008_bib36","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/0146-664X(79)90049-2","article-title":"Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm","volume":"10","author":"Chen","year":"1979","journal-title":"Comp Graphics Image Process"},{"key":"10.1016\/j.artmed.2006.07.008_bib37","series-title":"Proceedings of the IEEE international conference on neural networks","article-title":"A direct adaptive method for faster backpropagation learning: the RPROP algorithm","author":"Riedmiller","year":"1993"},{"key":"10.1016\/j.artmed.2006.07.008_bib38","series-title":"Proceedings of the second international ICSC symposium on neural computation (NC 2000)","article-title":"Improving the Rprop learning algorithm","author":"Igel","year":"2000"},{"key":"10.1016\/j.artmed.2006.07.008_bib39","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/S0893-6080(05)80056-5","article-title":"A scaled conjugate gradient algorithm for fast supervised learning","volume":"6","author":"Moller","year":"1993","journal-title":"Neural Networks"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib40","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/S0893-6080(96)00052-4","article-title":"Effective backpropagation training with variable stepsize","volume":"10","author":"Magoulas","year":"1997","journal-title":"Neural Netw"},{"issue":"5","key":"10.1016\/j.artmed.2006.07.008_bib41","doi-asserted-by":"crossref","first-page":"3425","DOI":"10.1016\/S0362-546X(01)00458-8","article-title":"Adaptive stepsize algorithms for on-line training of neural networks","volume":"47","author":"Magoulas","year":"2001","journal-title":"Nonlinear Anal TMA"},{"key":"10.1016\/j.artmed.2006.07.008_bib42","series-title":"Parallel distributed processing: explorations in the microstructure of cognition: foundations","article-title":"Learning internal representations by error propagation","author":"Rumelhart","year":"1986"},{"key":"10.1016\/j.artmed.2006.07.008_bib43","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Netw"},{"key":"10.1016\/j.artmed.2006.07.008_bib44","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1016\/0893-6080(90)90004-5","article-title":"Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings","volume":"3","author":"White","year":"1990","journal-title":"Neural Netw"},{"key":"10.1016\/j.artmed.2006.07.008_bib45","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1109\/34.75512","article-title":"Small sample size effects in statistical pattern recognition: Recommendations for practitioners","author":"Raudys","year":"1991","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.artmed.2006.07.008_bib46","doi-asserted-by":"crossref","unstructured":"John GH, Kohavi R, Pfleger K, Irrelevant features and the subset selection problem. In: International conference on machine learning; 1994, p. 121\u201329, journal version in AIJ, available at http:\/\/citeseer.nj.nec.com\/13663.html.","DOI":"10.1016\/B978-1-55860-335-6.50023-4"},{"key":"10.1016\/j.artmed.2006.07.008_bib47","series-title":"16th conference on uncertainty in artificial intelligence (UAI 2000)","article-title":"Experiments with random projection","author":"Dasgupta","year":"2000"},{"key":"10.1016\/j.artmed.2006.07.008_bib48","series-title":"SODA: ACM-SIAM symposium on discrete algorithms (a conference on theoretical and experimental analysis of discrete algorithms)","article-title":"Clustering in large graphs and matrices","author":"Drineas","year":"1999"},{"key":"10.1016\/j.artmed.2006.07.008_bib49","series-title":"1999 ACM SIGMOD international conference on management of data","article-title":"Fast algorithms for projected clustering","author":"Aggarwal","year":"1999"},{"key":"10.1016\/j.artmed.2006.07.008_bib50","series-title":"SIGMOD \u201998: proceedings of the 1998 ACM SIGMOD international conference on management of data","article-title":"Automatic subspace clustering of high dimensional data for data mining applications","author":"Agrawal","year":"1998"},{"key":"10.1016\/j.artmed.2006.07.008_bib51","doi-asserted-by":"crossref","first-page":"100","DOI":"10.2307\/2346830","article-title":"A k-means clustering algorithm","volume":"28","author":"Hartigan","year":"1979","journal-title":"Appl Stat"},{"key":"10.1016\/j.artmed.2006.07.008_bib52","doi-asserted-by":"crossref","unstructured":"Alevizos P, Boutsinas B, Tasoulis DK, Vrahatis MN. Improving the orthogonal range search k-windows clustering algorithm. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC; 2002. p. 239-45.","DOI":"10.1109\/TAI.2002.1180810"},{"key":"10.1016\/j.artmed.2006.07.008_bib53","series-title":"Lecture notes in computer science, vol. 3019","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-540-24669-5_29","article-title":"Parallelizing the unsupervised k-windows clustering algorithm","author":"Alevizos","year":"2004"},{"key":"10.1016\/j.artmed.2006.07.008_bib54","series-title":"Lecture notes in computer science, LNCS 2763","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-540-45145-7_32","article-title":"Parallel unsupervised k-windows: an efficient parallel clustering algorithm","author":"Tasoulis","year":"2003"},{"key":"10.1016\/j.artmed.2006.07.008_bib55","series-title":"Knowledge mining: series studies in fuzziness and soft computing, vol. 185","doi-asserted-by":"crossref","DOI":"10.1007\/3-540-32394-5_5","article-title":"Novel approaches to unsupervised clustering through the k-windows algorithm","author":"Tasoulis","year":"2005"},{"issue":"13","key":"10.1016\/j.artmed.2006.07.008_bib56","doi-asserted-by":"crossref","first-page":"2116","DOI":"10.1016\/j.patrec.2005.03.023","article-title":"Unsupervised clustering on dynamic databases","volume":"26","author":"Tasoulis","year":"2005","journal-title":"Pattern Recogn Lett"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib57","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1148\/radiology.143.1.7063747","article-title":"The meaning and use of the area under a receiver operating characteristic (ROC) curve","volume":"143","author":"Hanley","year":"1982","journal-title":"Radiology"},{"key":"10.1016\/j.artmed.2006.07.008_bib58","series-title":"Handbook of data mining and knowledge discovery","article-title":"Data mining tasks and methods: classification: Bayesian classification","author":"Friedman","year":"2002"},{"issue":"1","key":"10.1016\/j.artmed.2006.07.008_bib59","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/0893-6080(90)90049-Q","article-title":"Probabilistic neural networks","volume":"3","author":"Specht","year":"1990","journal-title":"Neural Netw"},{"key":"10.1016\/j.artmed.2006.07.008_bib60","series-title":"Lecture notes in computer science, (LNAI), vol. 2774","article-title":"A neural network approach to the comparative evaluation of physician\u2019s subjective assessment versus quantitative nuclear features in grading urine bladder tumors","author":"Tasoulis","year":"2003"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365706001102?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365706001102?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2025,1,11]],"date-time":"2025-01-11T01:33:59Z","timestamp":1736559239000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365706001102"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,11]]},"references-count":60,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2006,11]]}},"alternative-id":["S0933365706001102"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2006.07.008","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2006,11]]}}}