{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:06:50Z","timestamp":1740118010559,"version":"3.37.3"},"reference-count":88,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100000185","name":"Defense Advanced Research Projects Agency","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000185","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000005","name":"U.S. Department of Defense","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000005","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100006502","name":"DARPA DSO","doi-asserted-by":"publisher","award":["HR001120C0040"],"id":[{"id":"10.13039\/100006502","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.artint.2024.104161","type":"journal-article","created":{"date-parts":[[2024,6,6]],"date-time":"2024-06-06T10:36:42Z","timestamp":1717670202000},"page":"104161","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A domain-independent agent architecture for adaptive operation in evolving open worlds"],"prefix":"10.1016","volume":"334","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9299-4414","authenticated-orcid":false,"given":"Shiwali","family":"Mohan","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9837-5609","authenticated-orcid":false,"given":"Wiktor","family":"Piotrowski","sequence":"additional","affiliation":[]},{"given":"Roni","family":"Stern","sequence":"additional","affiliation":[]},{"given":"Sachin","family":"Grover","sequence":"additional","affiliation":[]},{"given":"Sookyung","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Jacob","family":"Le","sequence":"additional","affiliation":[]},{"given":"Yoni","family":"Sher","sequence":"additional","affiliation":[]},{"given":"Johan","family":"de Kleer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artint.2024.104161_br0010","series-title":"International Conference on Machine Learning","first-page":"20","article-title":"Policy and value transfer in lifelong reinforcement learning","author":"Abel","year":"2018"},{"key":"10.1016\/j.artint.2024.104161_br0020","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1016\/j.jss.2010.11.915","article-title":"Simultaneous debugging of software faults","volume":"84","author":"Abreu","year":"2011","journal-title":"J. Syst. Softw."},{"key":"10.1016\/j.artint.2024.104161_br0030","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.artint.2019.05.003","article-title":"Learning action models with minimal observability","volume":"275","author":"Aineto","year":"2019","journal-title":"Artif. Intell."},{"key":"10.1016\/j.artint.2024.104161_br0040","doi-asserted-by":"crossref","first-page":"1091","DOI":"10.1613\/jair.1.13073","article-title":"A comprehensive framework for learning declarative action models","volume":"74","author":"Aineto","year":"2022","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.artint.2024.104161_br0050","doi-asserted-by":"crossref","DOI":"10.1017\/S0269888918000188","article-title":"A review of learning planning action models","volume":"33","author":"Arora","year":"2018","journal-title":"Knowl. Eng. Rev."},{"key":"10.1016\/j.artint.2024.104161_br0060","series-title":"ACM\/IEEE International Conference on Model Driven Engineering Languages and Systems","first-page":"24","article-title":"An extensible framework for customizable model repair","author":"Barriga","year":"2020"},{"key":"10.1016\/j.artint.2024.104161_br0070","series-title":"ICAPS 2022 Workshop on Integrated Planning, Acting, and Execution","article-title":"Towards automatic state recovery for replanning","author":"Bezrucav","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0080","doi-asserted-by":"crossref","first-page":"3967","DOI":"10.1109\/LRA.2020.2978451","article-title":"Reinforcement learning for pomdp: partitioned rollout and policy iteration with application to autonomous sequential repair problems","volume":"5","author":"Bhattacharya","year":"2020","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.artint.2024.104161_br0090","series-title":"Annual Conference on Artificial Intelligence","first-page":"169","article-title":"Plan repair in hybrid planning","author":"Bidot","year":"2008"},{"key":"10.1016\/j.artint.2024.104161_br0100","series-title":"AAAI Conference on Artificial Intelligence","first-page":"15047","article-title":"Towards a unifying framework for formal theories of novelty","author":"Boult","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0110","doi-asserted-by":"crossref","first-page":"381","DOI":"10.3390\/a15100381","article-title":"Weibull-open-world (wow) multi-type novelty detection in cartpole3d","volume":"15","author":"Boult","year":"2022","journal-title":"Algorithms"},{"key":"10.1016\/j.artint.2024.104161_br0120","series-title":"International Joint Conference on Artificial Intelligence","first-page":"3053","article-title":"Maintaining evolving domain models","author":"Bryce","year":"2016"},{"key":"10.1016\/j.artint.2024.104161_br0130","series-title":"ICAPS","first-page":"583","article-title":"A compilation of the full PDDL+ language into SMT","author":"Cashmore","year":"2016"},{"key":"10.1016\/j.artint.2024.104161_br0140","series-title":"ACM\/IEEE International Conference on Human-Robot Interaction","first-page":"258","article-title":"Plan explanations as model reconciliation\u2013an empirical study","author":"Chakraborti","year":"2019"},{"author":"Chakraborti","key":"10.1016\/j.artint.2024.104161_br0150"},{"key":"10.1016\/j.artint.2024.104161_br0160","series-title":"AAMAS Workshop on Multiagent Sequential Decision Making Under Uncertainty","article-title":"Novelty accommodating multi-agent planning in high fidelity simulated open world","author":"Chao","year":"2023"},{"key":"10.1016\/j.artint.2024.104161_br0170","series-title":"IEEE International Symposium on Theoretical Aspects of Software Engineering","first-page":"85","article-title":"Model repair for Markov decision processes","author":"Chen","year":"2013"},{"key":"10.1016\/j.artint.2024.104161_br0180","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.cogsys.2017.05.005","article-title":"Evolution of the ICARUS cognitive architecture","volume":"48","author":"Choi","year":"2018","journal-title":"Cogn. Syst. Res."},{"key":"10.1016\/j.artint.2024.104161_br0190","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1613\/jair.3608","article-title":"COLIN: planning with continuous linear numeric change","volume":"44","author":"Coles","year":"2012","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.artint.2024.104161_br0200","series-title":"ICAPS","first-page":"74","article-title":"PDDL+ planning with events and linear processes","author":"Coles","year":"2014"},{"key":"10.1016\/j.artint.2024.104161_br0210","series-title":"International Conference on Automated Planning and Scheduling","first-page":"42","article-title":"Generalised domain model acquisition from action traces","author":"Cresswell","year":"2011"},{"key":"10.1016\/j.artint.2024.104161_br0220","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1017\/S0269888912000422","article-title":"Acquiring planning domain models using LOCM","volume":"28","author":"Cresswell","year":"2013","journal-title":"Knowl. Eng. Rev."},{"key":"10.1016\/j.artint.2024.104161_br0230","series-title":"International Conference on Automated Planning and Scheduling","first-page":"13","article-title":"Replanning: a new perspective","author":"Cushing","year":"2005"},{"key":"10.1016\/j.artint.2024.104161_br0240","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/0004-3702(87)90063-4","article-title":"Diagnosing multiple faults","volume":"32","author":"de Kleer","year":"1987","journal-title":"Artif. Intell."},{"key":"10.1016\/j.artint.2024.104161_br0250","series-title":"International Conference on Automated Planning and Scheduling","first-page":"106","article-title":"UPMurphi: a tool for universal planning on PDDL+ problems","author":"Della Penna","year":"2009"},{"key":"10.1016\/j.artint.2024.104161_br0260","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108931","article-title":"The familiarity hypothesis: explaining the behavior of deep open set methods","volume":"132","author":"Dietterich","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.artint.2024.104161_br0270","series-title":"AAAI Spring Symposium on Designing Artificial Intelligence for Open Worlds","article-title":"Toward defining a domain complexity measure across domains","author":"Doctor","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0280","doi-asserted-by":"crossref","first-page":"1172","DOI":"10.1016\/j.artint.2010.07.004","article-title":"Updating action domain descriptions","volume":"174","author":"Eiter","year":"2010","journal-title":"Artif. Intell."},{"key":"10.1016\/j.artint.2024.104161_br0290","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.engappai.2017.12.011","article-title":"An artificial intelligence paradigm for troubleshooting software bugs","volume":"69","author":"Elmishali","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.artint.2024.104161_br0300","series-title":"AAAI Conference on Artificial Intelligence","first-page":"2814","article-title":"Efficient model-based diagnosis of sequential circuits","author":"Feldman","year":"2020"},{"key":"10.1016\/j.artint.2024.104161_br0310","series-title":"International Conference on Automated Planning and Scheduling","first-page":"212","article-title":"Plan stability: replanning versus plan repair","author":"Fox","year":"2006"},{"key":"10.1016\/j.artint.2024.104161_br0320","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1613\/jair.1129","article-title":"PDDL2.1: an extension to PDDL for expressing temporal planning domains","volume":"20","author":"Fox","year":"2003","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.artint.2024.104161_br0330","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1613\/jair.2044","article-title":"Modelling mixed discrete-continuous domains for planning","volume":"27","author":"Fox","year":"2006","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.artint.2024.104161_br0340","series-title":"IEEE International Conference on Autonomic Computing","first-page":"255","article-title":"Reflecting on planning models: a challenge for self-modeling systems","author":"Frank","year":"2015"},{"key":"10.1016\/j.artint.2024.104161_br0350","series-title":"Intelligent Agents V: Agents Theories, Architectures, and Languages","first-page":"1","article-title":"The belief-desire-intention model of agency","author":"Georgeff","year":"1999"},{"key":"10.1016\/j.artint.2024.104161_br0360","series-title":"IEEE International Conference on Development and Learning","first-page":"15","article-title":"RAPid-Learn: a framework for learning to recover for handling novelties in open-world environments","author":"Goel","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0370","series-title":"AAMAS Adaptive Learning Agents (ALA) Workshop","article-title":"Novelgridworlds: a benchmark environment for detecting and adapting to novelties in open worlds","author":"Goel","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0380","series-title":"ICAPS 2022 Workshop on Explainable AI Planning","article-title":"Repair suggestions for planning domains with missing actions effects","author":"Gragera","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0390","series-title":"IJCAI","first-page":"4764","article-title":"Goal-hsvi: heuristic search value iteration for goal pomdps","author":"Hor\u00e1k","year":"2018"},{"key":"10.1016\/j.artint.2024.104161_br0400","series-title":"IEEE International Conference on Tools with Artificial Intelligence, IEEE","first-page":"294","article-title":"VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL","author":"Howey","year":"2004"},{"key":"10.1016\/j.artint.2024.104161_br0410","series-title":"AAAI Conference on Artificial Intelligence","article-title":"Selective experience replay for lifelong learning","author":"Isele","year":"2018"},{"key":"10.1016\/j.artint.2024.104161_br0420","series-title":"International Conference on Principles of Knowledge Representation and Reasoning","first-page":"379","article-title":"Safe learning of lifted action models","author":"Juba","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0430","series-title":"AAAI Conference on Artificial Intelligence","first-page":"9795","article-title":"Learning probably approximately complete and safe action models for stochastic worlds","author":"Juba","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0440","series-title":"International Workshop on Reasoning with Uncertainty in Robotics","first-page":"146","article-title":"Partially observable Markov decision processes for artificial intelligence","author":"Kaelbling","year":"1995"},{"author":"Kejriwal","key":"10.1016\/j.artint.2024.104161_br0450"},{"key":"10.1016\/j.artint.2024.104161_br0460","series-title":"Proceedings of the International Conference on Automated Planning and Scheduling","first-page":"734","article-title":"Pomhdp: search-based belief space planning using multiple heuristics","author":"Kim","year":"2019"},{"key":"10.1016\/j.artint.2024.104161_br0470","first-page":"25","article-title":"Fundamentals of Model-Based Diagnosis","volume":"vol. 36","author":"de Kleer","year":"2003"},{"key":"10.1016\/j.artint.2024.104161_br0480","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.jnca.2012.12.011","article-title":"Domain-independent multi-agent plan repair","volume":"37","author":"Komenda","year":"2014","journal-title":"J. Netw. Comput. Appl."},{"year":"2019","series-title":"The SOAR Cognitive Architecture","author":"Laird","key":"10.1016\/j.artint.2024.104161_br0490"},{"key":"10.1016\/j.artint.2024.104161_br0500","series-title":"AAAI Conference on Artificial Intelligence","first-page":"13539","article-title":"Open-world learning for radically autonomous agents","author":"Langley","year":"2020"},{"key":"10.1016\/j.artint.2024.104161_br0510","first-page":"185","article-title":"Ai autonomy: self-initiated open-world continual learning and adaptation","volume":"44","author":"Liu","year":"2023","journal-title":"AI Mag."},{"key":"10.1016\/j.artint.2024.104161_br0520","series-title":"AAAI Spring Symposium on Designing Artificial Intelligence for Open Worlds","article-title":"An integrated architecture for online adaptation to novelty in open worlds using probabilistic programming and novelty-aware planning","author":"Loyall","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0530","series-title":"IEEE International Conference on Prognostics and Health Management","first-page":"1","article-title":"Model-based diagnosis: a frequency domain view","author":"Matei","year":"2018"},{"year":"1998","series-title":"PDDL \u2014 the Planning Domain Definition Language","author":"McDermott","key":"10.1016\/j.artint.2024.104161_br0540"},{"key":"10.1016\/j.artint.2024.104161_br0550","series-title":"International Conference on Automated Planning and Scheduling","article-title":"Reasoning about autonomous processes in an estimated-regression planner","author":"McDermott","year":"2003"},{"author":"Mnih","key":"10.1016\/j.artint.2024.104161_br0560"},{"key":"10.1016\/j.artint.2024.104161_br0570","series-title":"International Conference on Autonomous Agents and Multiagent Systems","first-page":"989","article-title":"DiscoverHistory: understanding the past in planning and execution","author":"Molineaux","year":"2012"},{"key":"10.1016\/j.artint.2024.104161_br0580","series-title":"International Conference on Autonomous Agents and MultiAgent Systems","first-page":"925","article-title":"A novelty-centric agent architecture for changing worlds","author":"Muhammad","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0590","series-title":"Proceedings of the Ninth Annual Conference on Advances in Cognitive Systems","article-title":"OpenMIND: planning and adapting in domains with novelty","author":"Musliner","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0600","first-page":"63","article-title":"CPEF: a continuous planning and execution framework","volume":"20","author":"Myers","year":"1999","journal-title":"AI Mag."},{"key":"10.1016\/j.artint.2024.104161_br0610","series-title":"AAAI Conference on Artificial Intelligence","article-title":"Differential assessment of black-box AI agents","author":"Nayyar","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0620","first-page":"427","article-title":"Plan Reuse Versus Plan Generation: A Theoretical End Empirical Analysis","volume":"vol. 76","author":"Nebel","year":"1995"},{"key":"10.1016\/j.artint.2024.104161_br0630","series-title":"AAAI Conference on Artificial Intelligence","first-page":"4119","article-title":"On the diagnosis of cyber-physical production systems","author":"Niggemann","year":"2015"},{"key":"10.1016\/j.artint.2024.104161_br0640","series-title":"Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme VI","first-page":"45","article-title":"Model-based development of automation systems","author":"Niggemann","year":"2010"},{"key":"10.1016\/j.artint.2024.104161_br0650","series-title":"AAAI Conference on Artificial Intelligence","first-page":"1083","article-title":"Learning behavior models for hybrid timed systems","author":"Niggemann","year":"2012"},{"key":"10.1016\/j.artint.2024.104161_br0660","series-title":"ACM SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"4892","article-title":"ANDEA: anomaly and novelty detection, explanation, and accommodation","author":"Pang","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0670","series-title":"NASA Formal Methods Symposium","first-page":"295","article-title":"A greedy approach for the efficient repair of stochastic models","author":"Pathak","year":"2015"},{"key":"10.1016\/j.artint.2024.104161_br0680","series-title":"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence","first-page":"3213","article-title":"Heuristic planning for pddl+ domains","author":"Piotrowski","year":"2016"},{"author":"Piotrowski","key":"10.1016\/j.artint.2024.104161_br0690"},{"key":"10.1016\/j.artint.2024.104161_br0700","series-title":"International Conference on Automated Planning and Scheduling","first-page":"518","article-title":"Heuristic search for physics-based problems: angry birds in PDDL+","author":"Piotrowski","year":"2023"},{"key":"10.1016\/j.artint.2024.104161_br0710","first-page":"331","article-title":"Markov decision processes","volume":"2","author":"Puterman","year":"1990","journal-title":"Handb. Oper. Res. Manag. Sci."},{"key":"10.1016\/j.artint.2024.104161_br0720","series-title":"AAAI Conference on Artificial Intelligence","first-page":"1140","article-title":"Symbolic dynamic programming for first-order pomdps","author":"Sanner","year":"2010"},{"key":"10.1016\/j.artint.2024.104161_br0730","series-title":"European Conference on Artificial Intelligence","first-page":"655","article-title":"Interval-based relaxation for general numeric planning","author":"Scala","year":"2016"},{"author":"Schulman","key":"10.1016\/j.artint.2024.104161_br0740"},{"year":"2019","series-title":"Science of AI and Learning for Openworld Novelty (SAIL-ON)","author":"Senator","key":"10.1016\/j.artint.2024.104161_br0750"},{"key":"10.1016\/j.artint.2024.104161_br0760","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10458-012-9200-2","article-title":"A survey of point-based pomdp solvers","volume":"27","author":"Shani","year":"2013","journal-title":"Auton. Agents Multi-Agent Syst."},{"key":"10.1016\/j.artint.2024.104161_br0770","article-title":"Monte-Carlo planning in large pomdps","volume":"23","author":"Silver","year":"2010","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.artint.2024.104161_br0780","series-title":"International Joint Conference on Artificial Intelligence","first-page":"4405","article-title":"Efficient, safe, and probably approximately complete learning of action models","author":"Stern","year":"2017"},{"key":"10.1016\/j.artint.2024.104161_br0790","series-title":"AAAI Conference on Artificial Intelligence","first-page":"182","article-title":"A framework for model-based repair","author":"Sun","year":"1993"},{"year":"2018","series-title":"Reinforcement Learning: An Introduction","author":"Sutton","key":"10.1016\/j.artint.2024.104161_br0800"},{"key":"10.1016\/j.artint.2024.104161_br0810","series-title":"AAAI Spring Symposium on Designing Artificial Intelligence for Open Worlds","article-title":"An architecture for novelty handling in a multi-agent stochastic environment: case study in open-world monopoly","author":"Thai","year":"2022"},{"key":"10.1016\/j.artint.2024.104161_br0820","series-title":"AAAI Conference on Artificial Intelligence","first-page":"6514","article-title":"On exploiting hitting sets for model reconciliation","author":"Vasileiou","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0830","series-title":"AAAI Conference on Artificial Intelligence","first-page":"10236","article-title":"Deep recurrent belief propagation network for pomdps","author":"Wang","year":"2021"},{"key":"10.1016\/j.artint.2024.104161_br0840","article-title":"Active reasoning in an open-world environment","volume":"36","author":"Xu","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.artint.2024.104161_br0850","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.artint.2006.11.005","article-title":"Learning action models from plan examples using weighted MAX-SAT","volume":"171","author":"Yang","year":"2007","journal-title":"Artif. Intell."},{"key":"10.1016\/j.artint.2024.104161_br0860","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1007\/s11390-021-1484-8","article-title":"Meaningful update and repair of Markov decision processes for self-adaptive systems","volume":"37","author":"Yang","year":"2022","journal-title":"J. Comput. Sci. Technol."},{"key":"10.1016\/j.artint.2024.104161_br0870","series-title":"International Joint Conference on Artificial Intelligence","first-page":"2444","article-title":"Action-model acquisition from noisy plan traces","author":"Zhuo","year":"2013"},{"key":"10.1016\/j.artint.2024.104161_br0880","series-title":"International Joint Conference on Artificial Intelligence","first-page":"2451","article-title":"Refining incomplete planning domain models through plan traces","author":"Zhuo","year":"2013"}],"container-title":["Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0004370224000973?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0004370224000973?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T20:09:31Z","timestamp":1721678971000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0004370224000973"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":88,"alternative-id":["S0004370224000973"],"URL":"https:\/\/doi.org\/10.1016\/j.artint.2024.104161","relation":{},"ISSN":["0004-3702"],"issn-type":[{"type":"print","value":"0004-3702"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A domain-independent agent architecture for adaptive operation in evolving open worlds","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artint.2024.104161","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"104161"}}