{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T03:09:57Z","timestamp":1725937797767},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001824","name":"Czech Science Foundation","doi-asserted-by":"publisher","award":["18-27483Y","GA22-26655S"],"id":[{"id":"10.13039\/501100001824","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100018240","name":"Research Center for Informatics, Czech Technical University in Prague","doi-asserted-by":"publisher","award":["CZ.02.1.01\/0.0\/0.0\/16 019\/0000765"],"id":[{"id":"10.13039\/100018240","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001823","name":"Ministry of Education Youth and Sports of the Czech Republic","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001823","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.artint.2022.103805","type":"journal-article","created":{"date-parts":[[2022,10,19]],"date-time":"2022-10-19T15:02:00Z","timestamp":1666191720000},"page":"103805","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Value functions for depth-limited solving in zero-sum imperfect-information games"],"prefix":"10.1016","volume":"314","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7954-9420","authenticated-orcid":false,"given":"Vojt\u011bch","family":"Kova\u0159\u00edk","sequence":"first","affiliation":[]},{"given":"Dominik","family":"Seitz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1647-1507","authenticated-orcid":false,"given":"Viliam","family":"Lis\u00fd","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Rudolf","sequence":"additional","affiliation":[]},{"given":"Shuo","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Karel","family":"Ha","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6337","key":"10.1016\/j.artint.2022.103805_br0010","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1126\/science.aam6960","article-title":"Deepstack: expert-level artificial intelligence in heads-up no-limit poker","volume":"356","author":"Morav\u010d\u00edk","year":"2017","journal-title":"Science"},{"key":"10.1016\/j.artint.2022.103805_br0020","article-title":"Superhuman AI for heads-up no-limit poker: Libratus beats top professionals","author":"Brown","year":"2017","journal-title":"Science"},{"key":"10.1016\/j.artint.2022.103805_br0030","article-title":"Finding friend and foe in multi-agent games","volume":"32","author":"Serrino","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.artint.2022.103805_br0040","article-title":"Depth-limited solving for imperfect-information games","volume":"31","author":"Brown","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.artint.2022.103805_br0050","series-title":"Proceedings of the Twenty-Second European Conference on Artificial Intelligence","first-page":"1628","article-title":"Structure in the value function of two-player zero-sum games of incomplete information","author":"Wiggers","year":"2016"},{"key":"10.1016\/j.artint.2022.103805_br0060","series-title":"AAAI","first-page":"709","article-title":"Dynamic programming for partially observable stochastic games","volume":"vol. 4","author":"Hansen","year":"2004"},{"key":"10.1016\/j.artint.2022.103805_br0070","article-title":"Rethinking formal models of partially observable multiagent decision making","author":"Kova\u0159\u00edk","year":"2021","journal-title":"Artif. Intell."},{"issue":"6456","key":"10.1016\/j.artint.2022.103805_br0080","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1126\/science.aay2400","article-title":"Superhuman AI for multiplayer poker","volume":"365","author":"Brown","year":"2019","journal-title":"Science"},{"author":"Schmid","key":"10.1016\/j.artint.2022.103805_br0090"},{"key":"10.1016\/j.artint.2022.103805_br0100","first-page":"13076","article-title":"Learning to correlate in multi-player general-sum sequential games","volume":"32","author":"Celli","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"author":"Kova\u0159\u00edk","key":"10.1016\/j.artint.2022.103805_br0110"},{"key":"10.1016\/j.artint.2022.103805_br0120","series-title":"Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science","first-page":"191","article-title":"Timeability of extensive-form games","author":"Jakobsen","year":"2016"},{"key":"10.1016\/j.artint.2022.103805_br0130","series-title":"KR","first-page":"278","article-title":"Sequential equilibrium in games of imperfect recall","author":"Halpern","year":"2016"},{"key":"10.1016\/j.artint.2022.103805_br0140","article-title":"Reexamination of the perfectness concept for equilibrium points in extensive games","author":"Selten","year":"1974","journal-title":"Economics"},{"key":"10.1016\/j.artint.2022.103805_br0150","series-title":"Advances in Neural Information Processing Systems","first-page":"1729","article-title":"Regret minimization in games with incomplete information","author":"Zinkevich","year":"2008"},{"key":"10.1016\/j.artint.2022.103805_br0160","series-title":"Proceedings of the Fifteenth ACM Conference on Economics and Computation","first-page":"621","article-title":"Extensive-form game abstraction with bounds","author":"Kroer","year":"2014"},{"key":"10.1016\/j.artint.2022.103805_br0170","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"1917","article-title":"Online convex optimization for sequential decision processes and extensive-form games","volume":"vol. 33","author":"Farina","year":"2019"},{"key":"10.1016\/j.artint.2022.103805_br0180","first-page":"17057","article-title":"Combining deep reinforcement learning and search for imperfect-information games","volume":"33","author":"Brown","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.artint.2022.103805_br0190","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1137\/S0097539701398375","article-title":"The nonstochastic multiarmed bandit problem","volume":"32","author":"Auer","year":"2002","journal-title":"SIAM J. Comput."},{"author":"Tammelin","key":"10.1016\/j.artint.2022.103805_br0200"},{"key":"10.1016\/j.artint.2022.103805_br0210","series-title":"AAAI","first-page":"602","article-title":"Solving imperfect information games using decomposition","author":"Burch","year":"2014"},{"year":"2008","series-title":"Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations","author":"Shoham","key":"10.1016\/j.artint.2022.103805_br0220"},{"issue":"5","key":"10.1016\/j.artint.2022.103805_br0230","doi-asserted-by":"crossref","first-page":"333","DOI":"10.14311\/AP.2014.54.0333","article-title":"Alternative selection functions for information set Monte Carlo tree search","volume":"54","author":"Lis\u00fd","year":"2014","journal-title":"Acta Polytech."},{"year":"2017","series-title":"Time and space: Why imperfect information games are hard","author":"Burch","key":"10.1016\/j.artint.2022.103805_br0240"},{"key":"10.1016\/j.artint.2022.103805_br0250","series-title":"ICML","first-page":"805","article-title":"Fictitious self-play in extensive-form games","author":"Heinrich","year":"2015"},{"issue":"2","key":"10.1016\/j.artint.2022.103805_br0260","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.geb.2005.08.005","article-title":"Generalised weakened fictitious play","volume":"56","author":"Leslie","year":"2006","journal-title":"Games Econ. Behav."},{"key":"10.1016\/j.artint.2022.103805_br0270","series-title":"Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)","first-page":"224","article-title":"Monte Carlo continual resolving for online strategy computation in imperfect information games","author":"\u0160ustr","year":"2019"},{"key":"10.1016\/j.artint.2022.103805_br0280","series-title":"Advances in Neural Information Processing Systems","first-page":"1078","article-title":"Monte Carlo sampling for regret minimization in extensive games","author":"Lanctot","year":"2009"},{"year":"2006","series-title":"Dec-POMDPs and extensive form games: equivalence of models and algorithms","author":"Oliehoek","key":"10.1016\/j.artint.2022.103805_br0290"},{"year":"2013","series-title":"Value methods for efficiently solving stochastic games of complete and incomplete information","author":"Dermed","key":"10.1016\/j.artint.2022.103805_br0300"},{"issue":"1","key":"10.1016\/j.artint.2022.103805_br0310","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1006\/jeth.2000.2695","article-title":"Dynamic games with hidden actions and hidden states","volume":"98","author":"Cole","year":"2001","journal-title":"J. Econ. Theory"},{"key":"10.1016\/j.artint.2022.103805_br0320","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"2029","article-title":"Solving partially observable stochastic games with public observations","volume":"vol. 33","author":"Hor\u00e1k","year":"2019"},{"key":"10.1016\/j.artint.2022.103805_br0330","series-title":"Thirty-First AAAI Conference on Artificial Intelligence","first-page":"558","article-title":"Heuristic search value iteration for one-sided partially observable stochastic games","author":"Hor\u00e1k","year":"2017"},{"key":"10.1016\/j.artint.2022.103805_br0340","series-title":"Reinforcement Learning","first-page":"471","article-title":"Decentralized POMDPs","author":"Oliehoek","year":"2012"},{"author":"Buffet","key":"10.1016\/j.artint.2022.103805_br0350"},{"author":"Delage","key":"10.1016\/j.artint.2022.103805_br0360"},{"key":"10.1016\/j.artint.2022.103805_br0370","series-title":"Twenty-Third International Joint Conference on Artificial Intelligence","first-page":"302","article-title":"Sufficient plan-time statistics for decentralized POMDPs","author":"Oliehoek","year":"2013"},{"key":"10.1016\/j.artint.2022.103805_br0380","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1613\/jair.4623","article-title":"Optimally solving Dec-POMDPs as continuous-state MDPs","volume":"55","author":"Dibangoye","year":"2016","journal-title":"J. Artif. Intell. Res."},{"author":"Zarick","key":"10.1016\/j.artint.2022.103805_br0390"},{"author":"Kingma","key":"10.1016\/j.artint.2022.103805_br0410"},{"author":"Southey","key":"10.1016\/j.artint.2022.103805_br0420"},{"key":"10.1016\/j.artint.2022.103805_br0430","article-title":"Efficient Monte Carlo counterfactual regret minimization in games with many player actions","volume":"25","author":"Burch","year":"2012","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.artint.2022.103805_br0440","series-title":"International Conference on Machine Learning","first-page":"793","article-title":"Deep counterfactual regret minimization","author":"Brown","year":"2019"},{"year":"2021","series-title":"Efficiency of counterfactual regret minimizations variants in diverse domains","author":"Rudolf","key":"10.1016\/j.artint.2022.103805_br0450"},{"key":"10.1016\/j.artint.2022.103805_br0460","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"5363","article-title":"Faster game solving via predictive Blackwell approachability: connecting regret matching and mirror descent","volume":"vol. 35","author":"Farina","year":"2021"},{"key":"10.1016\/j.artint.2022.103805_br0470","first-page":"7161","article-title":"Small Nash equilibrium certificates in very large games","volume":"33","author":"Zhang","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.artint.2022.103805_br0480","series-title":"AAAI Workshop on Reinforcement Learning in Games","first-page":"1","article-title":"Finding and certifying (near-) optimal strategies in black-box extensive-form games","author":"Zhang","year":"2021"},{"issue":"7676","key":"10.1016\/j.artint.2022.103805_br0490","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1038\/nature24270","article-title":"Mastering the game of Go without human knowledge","volume":"550","author":"Silver","year":"2017","journal-title":"Nature"},{"key":"10.1016\/j.artint.2022.103805_br0500","series-title":"Machine Learning Proceedings 1994","first-page":"157","article-title":"Markov games as a framework for multi-agent reinforcement learning","author":"Littman","year":"1994"},{"year":"2018","series-title":"Reinforcement Learning: An Introduction","author":"Sutton","key":"10.1016\/j.artint.2022.103805_br0510"},{"issue":"Nov","key":"10.1016\/j.artint.2022.103805_br0520","first-page":"1039","article-title":"Nash q-learning for general-sum stochastic games","volume":"4","author":"Hu","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.artint.2022.103805_br0530","series-title":"ICML","first-page":"242","article-title":"Correlated Q-learning","volume":"vol. 3","author":"Greenwald","year":"2003"},{"key":"10.1016\/j.artint.2022.103805_br0540","series-title":"Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems","first-page":"1674","article-title":"Sound algorithms in imperfect information games","author":"\u0160ustr","year":"2021"},{"key":"10.1016\/j.artint.2022.103805_br0550","series-title":"Advances in Computer Games","first-page":"361","article-title":"Solving the oshi-zumo game","author":"Buro","year":"2004"}],"container-title":["Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S000437022200145X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S000437022200145X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T03:52:44Z","timestamp":1723261964000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S000437022200145X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":54,"alternative-id":["S000437022200145X"],"URL":"https:\/\/doi.org\/10.1016\/j.artint.2022.103805","relation":{},"ISSN":["0004-3702"],"issn-type":[{"type":"print","value":"0004-3702"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Value functions for depth-limited solving in zero-sum imperfect-information games","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artint.2022.103805","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103805"}}