{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T03:57:47Z","timestamp":1720411067293},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,7,1]],"date-time":"2015-07-01T00:00:00Z","timestamp":1435708800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence"],"published-print":{"date-parts":[[2015,7]]},"DOI":"10.1016\/j.artint.2015.02.008","type":"journal-article","created":{"date-parts":[[2015,3,10]],"date-time":"2015-03-10T17:50:57Z","timestamp":1426009857000},"page":"28-50","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Efficient nonconvex sparse group feature selection via continuous and discrete optimization"],"prefix":"10.1016","volume":"224","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5399-5484","authenticated-orcid":false,"given":"Shuo","family":"Xiang","sequence":"first","affiliation":[]},{"given":"Xiaotong","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Jieping","family":"Ye","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artint.2015.02.008_br0010","series-title":"Convex Optimization with Sparsity-Inducing Norms","author":"Bach","year":"2010"},{"issue":"1","key":"10.1016\/j.artint.2015.02.008_br0020","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1093\/imanum\/8.1.141","article-title":"Two-point step size gradient methods","volume":"8","author":"Barzilai","year":"1988","journal-title":"IMA J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.artint.2015.02.008_br0030","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear inverse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"issue":"4","key":"10.1016\/j.artint.2015.02.008_br0040","doi-asserted-by":"crossref","first-page":"1705","DOI":"10.1214\/08-AOS620","article-title":"Simultaneous analysis of Lasso and Dantzig selector","volume":"37","author":"Bickel","year":"2009","journal-title":"Ann. Stat."},{"issue":"3","key":"10.1016\/j.artint.2015.02.008_br0050","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.acha.2009.04.002","article-title":"Iterative hard thresholding for compressed sensing","volume":"27","author":"Blumensath","year":"2009","journal-title":"Appl. Comput. Harmon. Anal."},{"key":"10.1016\/j.artint.2015.02.008_br0060","series-title":"Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers","author":"Boyd","year":"2011"},{"key":"10.1016\/j.artint.2015.02.008_br0070","series-title":"Convex Optimization","author":"Boyd","year":"2004"},{"issue":"3","key":"10.1016\/j.artint.2015.02.008_br0080","doi-asserted-by":"crossref","first-page":"369","DOI":"10.4310\/SII.2009.v2.n3.a10","article-title":"Penalized methods for bi-level variable selection","volume":"2","author":"Breheny","year":"2009","journal-title":"Stat. Interface"},{"issue":"3","key":"10.1016\/j.artint.2015.02.008_br0090","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/0167-6377(84)90010-5","article-title":"An O(n) algorithm for quadratic knapsack problems","volume":"3","author":"Brucker","year":"1984","journal-title":"Oper. Res. Lett."},{"issue":"12","key":"10.1016\/j.artint.2015.02.008_br0100","doi-asserted-by":"crossref","first-page":"4203","DOI":"10.1109\/TIT.2005.858979","article-title":"Decoding by linear programming","volume":"51","author":"Candes","year":"2005","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.artint.2015.02.008_br0110","series-title":"Fixed-Point Algorithms for Inverse Problems in Science and Engineering","article-title":"Proximal splitting methods in signal processing","author":"Combettes","year":"2010"},{"issue":"3","key":"10.1016\/j.artint.2015.02.008_br0120","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1109\/18.382009","article-title":"De-noising by soft-thresholding","volume":"41","author":"Donoho","year":"2002","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.artint.2015.02.008_br0130","series-title":"Proceedings of the 25th International Conference on Machine Learning","first-page":"272","article-title":"Efficient projections onto the \u21131-ball for learning in high dimensions","author":"Duchi","year":"2008"},{"issue":"456","key":"10.1016\/j.artint.2015.02.008_br0140","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1198\/016214501753382273","article-title":"Variable selection via nonconcave penalized likelihood and its oracle properties","volume":"96","author":"Fan","year":"2001","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.artint.2015.02.008_br0150","series-title":"Approximation Theory XIII: San Antonio 2010","first-page":"65","article-title":"Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants","author":"Foucart","year":"2012"},{"key":"10.1016\/j.artint.2015.02.008_br0160","series-title":"UCI Machine Learning Repository","author":"Frank","year":"2010"},{"key":"10.1016\/j.artint.2015.02.008_br0170","author":"Friedman"},{"key":"10.1016\/j.artint.2015.02.008_br0180","series-title":"The 30th International Conference on Machine Learning","first-page":"37","article-title":"A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems","author":"Gong","year":"2013"},{"key":"10.1016\/j.artint.2015.02.008_br0190","unstructured":"M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21, http:\/\/cvxr.com\/cvx, April 2011."},{"issue":"2","key":"10.1016\/j.artint.2015.02.008_br0200","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1093\/biomet\/asp020","article-title":"A group bridge approach for variable selection","volume":"96","author":"Huang","year":"2009","journal-title":"Biometrika"},{"issue":"4","key":"10.1016\/j.artint.2015.02.008_br0210","doi-asserted-by":"crossref","first-page":"1978","DOI":"10.1214\/09-AOS778","article-title":"The benefit of group sparsity","volume":"38","author":"Huang","year":"2010","journal-title":"Ann. Stat."},{"issue":"4","key":"10.1016\/j.artint.2015.02.008_br0220","doi-asserted-by":"crossref","DOI":"10.1214\/12-STS392","article-title":"A selective review of group selection in high-dimensional models","volume":"27","author":"Huang","year":"2012","journal-title":"Stat. Sci."},{"key":"10.1016\/j.artint.2015.02.008_br0230","first-page":"2297","article-title":"Proximal methods for hierarchical sparse coding","volume":"12","author":"Jenatton","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.artint.2015.02.008_br0240","doi-asserted-by":"crossref","DOI":"10.1090\/trans2\/017\/10","article-title":"e-Entropy and e-capacity of sets in functional spaces","author":"Kolmogorov","year":"1961","journal-title":"Transl. Am. Math. Soc."},{"issue":"2","key":"10.1016\/j.artint.2015.02.008_br0250","first-page":"3","article-title":"\u03b5-Entropy and \u03b5-capacity of sets in function spaces","volume":"14","author":"Kolmogorov","year":"1959","journal-title":"Usp. Mat. Nauk"},{"key":"10.1016\/j.artint.2015.02.008_br0260","series-title":"Introduction to Algorithms","author":"Leiserson","year":"2001"},{"key":"10.1016\/j.artint.2015.02.008_br0270","series-title":"SLEP: Sparse Learning with Efficient Projections","author":"Liu","year":"2009"},{"key":"10.1016\/j.artint.2015.02.008_br0280","author":"Lu"},{"issue":"495","key":"10.1016\/j.artint.2015.02.008_br0290","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1198\/jasa.2011.tm09738","article-title":"Sparsenet: coordinate descent with nonconvex penalties","volume":"106","author":"Mazumder","year":"2011","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"10.1016\/j.artint.2015.02.008_br0300","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1111\/j.1467-9868.2007.00627.x","article-title":"The group lasso for logistic regression","volume":"70","author":"Meier","year":"2008","journal-title":"J. R. Stat. Soc., Ser. B, Stat. Methodol."},{"issue":"2","key":"10.1016\/j.artint.2015.02.008_br0310","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1137\/S0097539792240406","article-title":"Sparse approximation solutions to linear systems","volume":"24","author":"Natarajan","year":"1995","journal-title":"SIAM J. Comput."},{"key":"10.1016\/j.artint.2015.02.008_br0320","series-title":"Gradient methods for minimizing composite objective function","author":"Nesterov","year":"2007"},{"key":"10.1016\/j.artint.2015.02.008_br0330","series-title":"Numerical Optimization","author":"Nocedal","year":"2000"},{"key":"10.1016\/j.artint.2015.02.008_br0340","series-title":"NIPS'11\u201425th Annual Conference on Neural Information Processing Systems","article-title":"Convergence rates of inexact proximal-gradient methods for convex optimization","author":"Schmidt","year":"2011"},{"key":"10.1016\/j.artint.2015.02.008_br0350","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1080\/01621459.2011.645783","article-title":"Likelihood-based selection and sharp parameter estimation","volume":"107","author":"Shen","year":"2012","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.artint.2015.02.008_br0360","first-page":"1","article-title":"On constrained and regularized high-dimensional regression","volume":"1","author":"Shen","year":"2013","journal-title":"Ann. Inst. Stat. Math."},{"key":"10.1016\/j.artint.2015.02.008_br0370","series-title":"Proceedings of the 29th International Conference on Machine Learning","first-page":"12","article-title":"Efficient Euclidean projections onto the intersection of norm balls","volume":"vol. 951","author":"Su","year":"2012"},{"issue":"1","key":"10.1016\/j.artint.2015.02.008_br0380","first-page":"289","article-title":"Convex analysis approach to dc programming: theory, algorithms and applications","volume":"22","author":"Tao","year":"1997","journal-title":"Acta Math. Vietnam."},{"key":"10.1016\/j.artint.2015.02.008_br0390","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc., Ser. B, Stat. Methodol."},{"issue":"3","key":"10.1016\/j.artint.2015.02.008_br0400","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1198\/004017005000000139","article-title":"Simultaneous variable selection","volume":"47","author":"Turlach","year":"2005","journal-title":"Technometrics"},{"key":"10.1016\/j.artint.2015.02.008_br0410","doi-asserted-by":"crossref","first-page":"1360","DOI":"10.1214\/09-EJS506","article-title":"On the conditions used to prove oracle results for the lasso","volume":"3","author":"Van De Geer","year":"2009","journal-title":"Electron. J. Stat."},{"issue":"12","key":"10.1016\/j.artint.2015.02.008_br0420","doi-asserted-by":"crossref","first-page":"1486","DOI":"10.1093\/bioinformatics\/btm125","article-title":"Group SCAD regression analysis for microarray time course gene expression data","volume":"23","author":"Wang","year":"2007","journal-title":"Bioinformatics"},{"issue":"2","key":"10.1016\/j.artint.2015.02.008_br0430","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1214\/aos\/1176324524","article-title":"Probability inequalities for likelihood ratios and convergence rates of sieve MLEs","volume":"23","author":"Wong","year":"1995","journal-title":"Ann. Stat."},{"issue":"7","key":"10.1016\/j.artint.2015.02.008_br0440","doi-asserted-by":"crossref","first-page":"2479","DOI":"10.1109\/TSP.2009.2016892","article-title":"Sparse reconstruction by separable approximation","volume":"57","author":"Wright","year":"2009","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.artint.2015.02.008_br0450","series-title":"The 30th International Conference on Machine Learning","first-page":"284","article-title":"Efficient sparse group feature selection via nonconvex optimization","author":"Xiang","year":"2013"},{"key":"10.1016\/j.artint.2015.02.008_br0460","article-title":"Bi-level multi-source learning for heterogeneous block-wise missing data","author":"Xiang","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.artint.2015.02.008_br0470","series-title":"Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"185","article-title":"Multi-source learning with block-wise missing data for Alzheimer's disease prediction","author":"Xiang","year":"2013"},{"key":"10.1016\/j.artint.2015.02.008_br0480","series-title":"Proceedings of the 27th International Conference on Machine Learning","first-page":"1191","article-title":"Online learning for group lasso","author":"Yang","year":"2010"},{"issue":"1","key":"10.1016\/j.artint.2015.02.008_br0490","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1111\/j.1467-9868.2005.00532.x","article-title":"Model selection and estimation in regression with grouped variables","volume":"68","author":"Yuan","year":"2006","journal-title":"J. R. Stat. Soc., Ser. B, Stat. Methodol."},{"key":"10.1016\/j.artint.2015.02.008_br0500","first-page":"1081","article-title":"Analysis of multi-stage convex relaxation for sparse regularization","volume":"11","author":"Zhang","year":"2010","journal-title":"J. Mach. Learn. Res."},{"issue":"5B","key":"10.1016\/j.artint.2015.02.008_br0510","doi-asserted-by":"crossref","first-page":"2277","DOI":"10.3150\/12-BEJ452","article-title":"Multi-stage convex relaxation for feature selection","volume":"19","author":"Zhang","year":"2013","journal-title":"Bernoulli"},{"key":"10.1016\/j.artint.2015.02.008_br0520","first-page":"2541","article-title":"On model selection consistency of lasso","volume":"7","author":"Zhao","year":"2006","journal-title":"J. Mach. Learn. Res."}],"container-title":["Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0004370215000302?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0004370215000302?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,7]],"date-time":"2024-06-07T18:58:12Z","timestamp":1717786692000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0004370215000302"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,7]]},"references-count":52,"alternative-id":["S0004370215000302"],"URL":"https:\/\/doi.org\/10.1016\/j.artint.2015.02.008","relation":{},"ISSN":["0004-3702"],"issn-type":[{"value":"0004-3702","type":"print"}],"subject":[],"published":{"date-parts":[[2015,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Efficient nonconvex sparse group feature selection via continuous and discrete optimization","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artint.2015.02.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}