{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T18:26:27Z","timestamp":1720808787641},"reference-count":27,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,7]],"date-time":"2022-03-07T00:00:00Z","timestamp":1646611200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Array"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.array.2022.100140","type":"journal-article","created":{"date-parts":[[2022,3,25]],"date-time":"2022-03-25T16:20:01Z","timestamp":1648225201000},"page":"100140","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["GARD: Gender difference analysis and recognition based on machine learning"],"prefix":"10.1016","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0549-4970","authenticated-orcid":false,"given":"Shiwen","family":"He","sequence":"first","affiliation":[]},{"given":"Jian","family":"Song","sequence":"additional","affiliation":[]},{"given":"Yeyu","family":"Ou","sequence":"additional","affiliation":[]},{"given":"Yuanhong","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Xiaojie","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiaohua","family":"Xu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.array.2022.100140_b1","first-page":"2041","article-title":"Saving patient ryan - Can advanced electronic medical records make patient care safer?","volume":"65","author":"Hydari","year":"2018","journal-title":"Manage Sci"},{"issue":"3","key":"10.1016\/j.array.2022.100140_b2","doi-asserted-by":"crossref","first-page":"29","DOI":"10.5121\/ijdkp.2018.8303","article-title":"Artificial intelligence based data governance for Chinese electronic health record analysis","volume":"8","author":"Junmei","year":"2018","journal-title":"Int J Data Min Knowl Manage Process"},{"key":"10.1016\/j.array.2022.100140_b3","series-title":"IEEE annual computer software and applications conference","first-page":"567","article-title":"Privacy-preserving data publishing for free text Chinese electronic medical records","author":"Chen","year":"2012"},{"key":"10.1016\/j.array.2022.100140_b4","series-title":"International conference on machine learning, Vol. 80","first-page":"5689","article-title":"GAIN: Missing data imputation using generative adversarial nets","author":"Yoon","year":"2018"},{"key":"10.1016\/j.array.2022.100140_b5","series-title":"IEEE international conference on healthcare informatics (ICHI)","article-title":"Categorical EHR imputation with generative adversarial nets","author":"Yang","year":"2019"},{"key":"10.1016\/j.array.2022.100140_b6","series-title":"International conference on neural information processing systems","first-page":"1603","article-title":"Multivariate time series imputation with generative adversarial networks","author":"Luo","year":"2018"},{"issue":"5","key":"10.1016\/j.array.2022.100140_b7","doi-asserted-by":"crossref","first-page":"1477","DOI":"10.1109\/TBME.2018.2874712","article-title":"Estimating missing data in temporal data streams using multi-directional recurrent neural networks","volume":"66","author":"Yoon","year":"2019","journal-title":"IEEE Trans Biomed Eng"},{"key":"10.1016\/j.array.2022.100140_b8","doi-asserted-by":"crossref","first-page":"S520","DOI":"10.1016\/j.jval.2019.09.625","article-title":"PCN432 evaluation of missing data imputation strategies in clinical trial and emr data using standardized data models","volume":"22","author":"McLean","year":"2019","journal-title":"Value Health"},{"key":"10.1016\/j.array.2022.100140_b9","series-title":"Synthesizing time-series wound prognosis factors from electronic medical records using generative adversarial networks","author":"Foomani","year":"2021"},{"issue":"1","key":"10.1016\/j.array.2022.100140_b10","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.neucom.2011.01.028","article-title":"Gender classification by combining clothing, hair and facial component classifiers","volume":"76","author":"Li","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.array.2022.100140_b11","series-title":"International workshop on advanced image technology","first-page":"1","article-title":"Age and gender classification using wide convolutional neural network and gabor filter","author":"Hosseini","year":"2018"},{"key":"10.1016\/j.array.2022.100140_b12","series-title":"International conference on deep learning technologies (ICDLT)","first-page":"81","article-title":"A study on image based gender classification using convolutional neural network","author":"Nie","year":"2019"},{"key":"10.1016\/j.array.2022.100140_b13","series-title":"Emerging trends in electronic devices and computational techniques","first-page":"1","article-title":"Euler number based feature extraction technique for gender discrimination from offline hindi signature using SVM & BPNN classifier","author":"pal","year":"2018"},{"key":"10.1016\/j.array.2022.100140_b14","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.eswa.2016.08.002","article-title":"An on-device gender prediction method for mobile users using representative wordsets","volume":"64","author":"Choi","year":"2016","journal-title":"Expert Syst Appl"},{"issue":"99","key":"10.1016\/j.array.2022.100140_b15","first-page":"1","article-title":"Gender identification via reposting behaviors in social media","volume":"PP","author":"Dongxu","year":"2017","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.array.2022.100140_b16","doi-asserted-by":"crossref","first-page":"5887","DOI":"10.1007\/s00521-018-3397-1","article-title":"Age and gender classification using brain-computer interface","volume":"31","author":"Kaur","year":"2019","journal-title":"Neural Comput Appl"},{"issue":"1","key":"10.1016\/j.array.2022.100140_b17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.37990\/medr.843451","article-title":"Estimation of gender by using decision tree, a machine learning algorithm, with patellar measurements obtained from MDCT images","volume":"3","author":"Serkan","year":"2021","journal-title":"Med Rec"},{"key":"10.1016\/j.array.2022.100140_b18","series-title":"International conference on soft computing and intelligent systems and 21st international symposium on advanced intelligent systems (SCIS-ISIS)","first-page":"1","article-title":"A 3D-CNN classifier for gender discrimination from diffusion tensor imaging of human brain","author":"Nitta","year":"2021"},{"issue":"16","key":"10.1016\/j.array.2022.100140_b19","first-page":"2194","article-title":"Investigation and analysis on reference value range of peripheral blood routine in preschool children from Shanghai","author":"Zheng","year":"2014","journal-title":"Int J Lab Med"},{"issue":"11","key":"10.1016\/j.array.2022.100140_b20","first-page":"1619","article-title":"Influence of age and gender on the red cell parameters in healthy people","volume":"26","author":"Min-Jie","year":"2016","journal-title":"Chin J Health Lab Technol"},{"issue":"9","key":"10.1016\/j.array.2022.100140_b21","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1016\/j.cca.2011.01.011","article-title":"Age and gender specific pediatric reference intervals for aldolase, amylase, ceruloplasmin, creatine kinase, pancreatic amylase, prealbumin, and uric acid","volume":"412","author":"Clifford","year":"2011","journal-title":"Clin Chim Acta"},{"key":"10.1016\/j.array.2022.100140_b22","series-title":"Statistical inference, Vol. 2","author":"Casella","year":"2002"},{"key":"10.1016\/j.array.2022.100140_b23","series-title":"Applied logistic regression, Vol. 34","first-page":"358","author":"Hosmer","year":"2013"},{"issue":"1","key":"10.1016\/j.array.2022.100140_b24","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach Learn"},{"key":"10.1016\/j.array.2022.100140_b25","series-title":"Inroduction to statistical pattern recognition, Vol. 22","first-page":"70","author":"Fukunaga","year":"1990"},{"key":"10.1016\/j.array.2022.100140_b26","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1023\/A:1007413511361","article-title":"On the optimality of the simple Bayesian classifier under zero-oneloss","volume":"29","author":"Domingos","year":"1997","journal-title":"Mach Learn - ML"},{"issue":"5","key":"10.1016\/j.array.2022.100140_b27","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1214\/aos\/1013203451","article-title":"Greedy function approximation: A gradient boosting machine","volume":"29","author":"Friedman","year":"2001","journal-title":"Ann Statist"}],"container-title":["Array"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S259000562200011X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S259000562200011X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,11]],"date-time":"2024-02-11T16:23:41Z","timestamp":1707668621000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S259000562200011X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":27,"alternative-id":["S259000562200011X"],"URL":"https:\/\/doi.org\/10.1016\/j.array.2022.100140","relation":{},"ISSN":["2590-0056"],"issn-type":[{"value":"2590-0056","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"GARD: Gender difference analysis and recognition based on machine learning","name":"articletitle","label":"Article Title"},{"value":"Array","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.array.2022.100140","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"100140"}}