{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:42:24Z","timestamp":1742805744608},"reference-count":18,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics Letters"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1016\/j.aml.2021.107732","type":"journal-article","created":{"date-parts":[[2021,10,14]],"date-time":"2021-10-14T05:00:01Z","timestamp":1634187601000},"page":"107732","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Generalizations of the constrained mock-Chebyshev least squares in two variables: Tensor product vs total degree polynomial interpolation"],"prefix":"10.1016","volume":"125","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4879-894X","authenticated-orcid":false,"given":"Francesco","family":"Dell\u2019Accio","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4638-2994","authenticated-orcid":false,"given":"Filomena","family":"Di Tommaso","sequence":"additional","affiliation":[]},{"given":"Federico","family":"Nudo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"224\u2013243","key":"10.1016\/j.aml.2021.107732_b1","first-page":"20","article-title":"\u00dcber empirische funktionen und die interpolation zwischen \u00e4quidistanten ordinaten","volume":"46","author":"Runge","year":"1901","journal-title":"Z. Math. Phys."},{"key":"10.1016\/j.aml.2021.107732_b2","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.cam.2014.11.032","article-title":"On the constrained mock-Chebyshev least-squares","volume":"280","author":"De\u00a0Marchi","year":"2015","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.aml.2021.107732_b3","series-title":"A Course in Approximation Theory, vol. 101","author":"Cheney","year":"2009"},{"issue":"1522","key":"10.1016\/j.aml.2021.107732_b4","doi-asserted-by":"crossref","DOI":"10.1038\/059200b0","article-title":"Fourier\u2019s series","volume":"59","author":"Gibbs","year":"1898","journal-title":"Nature"},{"issue":"4","key":"10.1016\/j.aml.2021.107732_b5","doi-asserted-by":"crossref","first-page":"644","DOI":"10.1137\/S0036144596301390","article-title":"On the Gibbs phenomenon and its resolution","volume":"39","author":"Gottlieb","year":"1997","journal-title":"SIAM Rev."},{"key":"10.1016\/j.aml.2021.107732_b6","article-title":"Multivariate approximation at fake nodes","volume":"391","author":"De Marchi","year":"2021","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.aml.2021.107732_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.aml.2019.106196","article-title":"Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm","volume":"103","author":"Berrut","year":"2020","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.aml.2021.107732_b8","article-title":"Polynomial interpolation via mapped bases without resampling","volume":"364","author":"De\u00a0Marchi","year":"2020","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.aml.2021.107732_b9","article-title":"Uniform weighted approximation on the square by polynomial interpolation at Chebyshev nodes","volume":"385","author":"Occorsio","year":"2020","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.aml.2021.107732_b10","first-page":"158","article-title":"Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock\u2013Chebyshev subset interpolation","volume":"210","author":"Boyd","year":"2009","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.aml.2021.107732_b11","series-title":"The Chebyshev Polynomials, Pure and Applied Mathematics","author":"Rivlin","year":"1974"},{"issue":"1","key":"10.1016\/j.aml.2021.107732_b12","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.jat.2006.03.008","article-title":"Bivariate Lagrange interpolation at the Padua points: the generating curve approach","volume":"143","author":"Bos","year":"2006","journal-title":"J. Approx. Theory"},{"key":"10.1016\/j.aml.2021.107732_b13","series-title":"Numerical Methods for Least Squares Problems","author":"Bj\u00f6rck","year":"1996"},{"key":"10.1016\/j.aml.2021.107732_b14","series-title":"Introduction To Applied Linear Algebra: Vectors, Matrices, and Least Squares","author":"Boyd","year":"2018"},{"issue":"1","key":"10.1016\/j.aml.2021.107732_b15","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1007\/s00211-007-0112-z","article-title":"Bivariate Lagrange interpolation at the Padua points: the ideal theory approach","volume":"108","author":"Bos","year":"2007","journal-title":"Numer. Math."},{"issue":"3","key":"10.1016\/j.aml.2021.107732_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1391989.1391994","article-title":"Algorithm 886: Padua2D-Lagrange interpolation at Padua points on bivariate domains","volume":"35","author":"Caliari","year":"2008","journal-title":"ACM Trans. Math. Softw."},{"key":"10.1016\/j.aml.2021.107732_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2019.07.001","article-title":"A fast algorithm for computing the mock-Chebyshev nodes","volume":"373","author":"Ibrahimoglu","year":"2020","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.aml.2021.107732_b18","first-page":"49","article-title":"Dubiner distance and stability of Lebesgue constants","volume":"10","author":"Vianello","year":"2019","journal-title":"J. Inequal. Spec. Funct."}],"container-title":["Applied Mathematics Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893965921003943?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893965921003943?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T11:50:37Z","timestamp":1678017037000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893965921003943"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3]]},"references-count":18,"alternative-id":["S0893965921003943"],"URL":"https:\/\/doi.org\/10.1016\/j.aml.2021.107732","relation":{},"ISSN":["0893-9659"],"issn-type":[{"value":"0893-9659","type":"print"}],"subject":[],"published":{"date-parts":[[2022,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Generalizations of the constrained mock-Chebyshev least squares in two variables: Tensor product vs total degree polynomial interpolation","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aml.2021.107732","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107732"}}