{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T10:18:40Z","timestamp":1720001920053},"reference-count":12,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics Letters"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.aml.2018.07.018","type":"journal-article","created":{"date-parts":[[2018,7,20]],"date-time":"2018-07-20T02:54:50Z","timestamp":1532055290000},"page":"27-34","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A global compactness result for an elliptic equation with double singular terms"],"prefix":"10.1016","volume":"87","author":[{"given":"Cheng-Jun","family":"He","sequence":"first","affiliation":[]},{"given":"Ting","family":"Yu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aml.2018.07.018_b1","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1002\/cpa.3160360405","article-title":"Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.","volume":"36","author":"Br\u00e9zis","year":"1983","journal-title":"Comm. Pure Appl. Math."},{"key":"10.1016\/j.aml.2018.07.018_b2","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1007\/BF01174186","article-title":"A global compactness result for elliptic boundary value problems involving limiting nonlinearities.","volume":"187","author":"Struwe","year":"1984","journal-title":"Math. Z."},{"key":"10.1016\/j.aml.2018.07.018_b3","doi-asserted-by":"crossref","first-page":"2861","DOI":"10.1016\/j.jfa.2012.01.006","article-title":"Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth.","volume":"262","author":"Cao","year":"2012","journal-title":"J. Funct. Anal."},{"key":"10.1016\/j.aml.2018.07.018_b4","doi-asserted-by":"crossref","first-page":"3929","DOI":"10.1016\/j.jde.2015.05.007","article-title":"Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential.","volume":"259","author":"Xiang","year":"2015","journal-title":"J. Differential Equations"},{"key":"10.1016\/j.aml.2018.07.018_b5","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1006\/jdeq.1998.3589","article-title":"The role played by space dimension in elliptic critical problems.","volume":"156","author":"Jannelli","year":"1999","journal-title":"J. Differential Equations"},{"key":"10.1016\/j.aml.2018.07.018_b6","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1512\/iumj.1989.38.38012","article-title":"Elliptic boundary value problems with singular coefficients and critical nonlinearities.","volume":"38","author":"Egnell","year":"1989","journal-title":"Indiana Univ. Math. J."},{"key":"10.1016\/j.aml.2018.07.018_b7","doi-asserted-by":"crossref","first-page":"494","DOI":"10.1006\/jdeq.2000.3999","article-title":"Existence of solutions for singular critical growth semilinear elliptic equations.","volume":"177","author":"Ferrero","year":"2001","journal-title":"J. Differential Equations"},{"key":"10.1016\/j.aml.2018.07.018_b8","doi-asserted-by":"crossref","first-page":"1857","DOI":"10.1090\/S0002-9939-02-06729-1","article-title":"A global compactness result for singular elliptic problems involving critical Sobolev exponent.","volume":"131","author":"Cao","year":"2003","journal-title":"Proc. Amer. Math. Soc."},{"key":"10.1016\/j.aml.2018.07.018_b9","first-page":"397","article-title":"A global compactness result for quasilinear elliptic boundary value problems involving limiting nonlinearities.","volume":"16A","author":"Yan","year":"1995","journal-title":"Chin. Ann. Math."},{"key":"10.1016\/j.aml.2018.07.018_b10","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1007\/s00526-013-0656-y","article-title":"Improved Sobolev embeddings profile decomposition and concentration-compactness for fractional Sobolev spaces.","volume":"50","author":"Palatucci","year":"2014","journal-title":"Calc. Var. Partial Differential Equations"},{"key":"10.1016\/j.aml.2018.07.018_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.na.2014.12.027","article-title":"A global compactness type result for Palais\u2013Smale sequences in fractional Sobolev spaces.","volume":"117","author":"Palatucci","year":"2015","journal-title":"Nonlinear Anal."},{"key":"10.1016\/j.aml.2018.07.018_b12","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1007\/s00526-009-0295-5","article-title":"Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential.","volume":"38","author":"Cao","year":"2010","journal-title":"Calc. Var. Partial Differential Equations"}],"container-title":["Applied Mathematics Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893965918302398?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893965918302398?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,7]],"date-time":"2024-04-07T02:32:57Z","timestamp":1712457177000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893965918302398"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":12,"alternative-id":["S0893965918302398"],"URL":"https:\/\/doi.org\/10.1016\/j.aml.2018.07.018","relation":{},"ISSN":["0893-9659"],"issn-type":[{"value":"0893-9659","type":"print"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A global compactness result for an elliptic equation with double singular terms","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aml.2018.07.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}