{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T16:29:32Z","timestamp":1726417772679},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics and Computation"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.amc.2020.125702","type":"journal-article","created":{"date-parts":[[2020,10,9]],"date-time":"2020-10-09T23:10:20Z","timestamp":1602285020000},"page":"125702","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements"],"prefix":"10.1016","volume":"392","author":[{"given":"Massimo","family":"Fornasier","sequence":"first","affiliation":[]},{"given":"Johannes","family":"Maly","sequence":"additional","affiliation":[]},{"given":"Valeriya","family":"Naumova","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.amc.2020.125702_bib0001","first-page":"1","article-title":"The blind deconvolution problem","author":"Haykin","year":"1994","journal-title":"Blind Deconvolution"},{"issue":"2","key":"10.1016\/j.amc.2020.125702_bib0002","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1198\/106186006X113430","article-title":"Sparse principal component analysis","volume":"15","author":"Zou","year":"2006","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.amc.2020.125702_bib0003","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"41","article-title":"A direct formulation for sparse PCA using semidefinite programming","author":"d\u2019Aspremont","year":"2005"},{"issue":"4","key":"10.1016\/j.amc.2020.125702_bib0004","doi-asserted-by":"crossref","first-page":"2342","DOI":"10.1109\/TIT.2011.2111771","article-title":"Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements","volume":"57","author":"Candes","year":"2011","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0005","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1137\/070697835","article-title":"Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization","volume":"52","author":"Recht","year":"2010","journal-title":"SIAM Rev."},{"issue":"5","key":"10.1016\/j.amc.2020.125702_bib0006","doi-asserted-by":"crossref","first-page":"2886","DOI":"10.1109\/TIT.2015.2401574","article-title":"Simultaneously structured models with application to sparse and low-rank matrices","volume":"61","author":"Oymak","year":"2015","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0007","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1093\/imaiai\/iaw012","article-title":"Near-optimal estimation of simultaneously sparse and low-rank matrices from nested linear measurements","volume":"5","author":"Bahmani","year":"2016","journal-title":"Inform. Inference: J. IMA"},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0008","doi-asserted-by":"crossref","first-page":"1666","DOI":"10.1109\/TIT.2017.2784479","article-title":"Near-optimal compressed sensing of a class of sparse low-rank matrices via sparse power factorization","volume":"64","author":"Lee","year":"2018","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.amc.2020.125702_bib0009","series-title":"Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing","first-page":"665","article-title":"Low-rank matrix completion using alternating minimization","author":"Jain","year":"2013"},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0010","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.acha.2009.04.002","article-title":"Iterative hard thresholding for compressed sensing","volume":"27","author":"Blumensath","year":"2009","journal-title":"Appl. Comput. Harmon. Anal."},{"issue":"12","key":"10.1016\/j.amc.2020.125702_bib0011","doi-asserted-by":"crossref","first-page":"125003","DOI":"10.1088\/0266-5611\/30\/12\/125003","article-title":"Minimization of multi-penalty functionals by alternating iterative thresholding and optimal parameter choices","volume":"30","author":"Naumova","year":"2014","journal-title":"Inverse Probl."},{"issue":"10","key":"10.1016\/j.amc.2020.125702_bib0012","doi-asserted-by":"crossref","first-page":"104007","DOI":"10.1088\/0266-5611\/32\/10\/104007","article-title":"Conditions on optimal support recovery in unmixing problems by means of multi-penalty regularization","volume":"32","author":"Grasmair","year":"2016","journal-title":"Inverse Probl."},{"issue":"10","key":"10.1016\/j.amc.2020.125702_bib0013","doi-asserted-by":"crossref","first-page":"104001","DOI":"10.1088\/0266-5611\/32\/10\/104001","article-title":"Sparsity-enforcing regularisation and ISTA revisited","volume":"32","author":"Daubechies","year":"2016","journal-title":"Inverse Probl."},{"key":"10.1016\/j.amc.2020.125702_bib0014","unstructured":"C. Ma, K. Wang, Y. Chi, Y. Chen, Implicit regularization in nonconvex statistical estimation: gradient descent converges linearly for phase retrieval, matrix completion and blind deconvolution, arXiv preprint arXiv:1711.10467(2017)."},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0015","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1016\/j.acha.2018.01.001","article-title":"Rapid, robust, and reliable blind deconvolution via nonconvex optimization","volume":"47","author":"Li","year":"2019","journal-title":"Appl. Comput. Harmon. Anal."},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0016","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1109\/TIT.2013.2294644","article-title":"Blind deconvolution using convex programming","volume":"60","author":"Ahmed","year":"2014","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"2","key":"10.1016\/j.amc.2020.125702_bib0017","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1109\/TIT.2016.2636204","article-title":"Blind recovery of sparse signals from subsampled convolution","volume":"63","author":"Lee","year":"2016","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.amc.2020.125702_bib0018","series-title":"Proceedings of the International Encyclopedia of Statistical Science","first-page":"1094","article-title":"Principal component analysis","author":"Jolliffe","year":"2011"},{"issue":"6","key":"10.1016\/j.amc.2020.125702_bib0019","doi-asserted-by":"crossref","DOI":"10.1007\/s10208-009-9045-5","article-title":"Exact matrix completion via convex optimization","volume":"9","author":"Cand\u00e8s","year":"2009","journal-title":"Found. Comput. Math."},{"article-title":"The netflix prize","year":"2007","series-title":"Proceedings of the KDD Cup and Workshop in Conjunction With KDD","author":"Bennett","key":"10.1016\/j.amc.2020.125702_bib0020"},{"issue":"4","key":"10.1016\/j.amc.2020.125702_bib0021","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1109\/PROC.1975.9800","article-title":"Blind deconvolution through digital signal processing","volume":"63","author":"Stockham","year":"1975","journal-title":"Proc. IEEE"},{"issue":"11","key":"10.1016\/j.amc.2020.125702_bib0022","doi-asserted-by":"crossref","first-page":"1867","DOI":"10.1109\/TCOM.1980.1094608","article-title":"Self-recovering equalization and carrier tracking in two-dimensional data communication systems","volume":"28","author":"Godard","year":"1980","journal-title":"IEEE Trans. Commun."},{"issue":"3","key":"10.1016\/j.amc.2020.125702_bib0023","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1137\/070697835","article-title":"Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization","volume":"52","author":"Recht","year":"2010","journal-title":"SIAM Rev."},{"issue":"7","key":"10.1016\/j.amc.2020.125702_bib0024","doi-asserted-by":"crossref","first-page":"4497","DOI":"10.1109\/TIT.2017.2701342","article-title":"Blind deconvolution meets blind demixing: algorithms and performance bounds","volume":"63","author":"Ling","year":"2017","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"1","key":"10.1016\/j.amc.2020.125702_bib0025","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/imaiai\/iax022","article-title":"Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing","volume":"8","author":"Ling","year":"2019","journal-title":"Inform. Inference"},{"issue":"2","key":"10.1016\/j.amc.2020.125702_bib0026","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1109\/TIT.2017.2784481","article-title":"Blind demixing and deconvolution at near-optimal rate","volume":"64","author":"Jung","year":"2018","journal-title":"IEEE Trans. Inf. Theory"},{"year":"2001","series-title":"Blind Equalization and Identification","author":"Ding","key":"10.1016\/j.amc.2020.125702_bib0027"},{"issue":"8","key":"10.1016\/j.amc.2020.125702_bib0028","doi-asserted-by":"crossref","first-page":"1275","DOI":"10.1002\/cpa.21442","article-title":"One-bit compressed sensing by linear programming","volume":"66","author":"Plan","year":"2013","journal-title":"Commun. Pure Appl. Math."},{"key":"10.1016\/j.amc.2020.125702_bib0029","series-title":"Compressed Sensing: Theory and Applications","first-page":"210","article-title":"Introduction to the non-asymptotic analysis of random matrices","author":"Vershynin","year":"2012"},{"issue":"2","key":"10.1016\/j.amc.2020.125702_bib0030","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1007\/s00454-013-9561-6","article-title":"Dimension reduction by random hyperplane tessellations","volume":"51","author":"Plan","year":"2014","journal-title":"Discrete Comput. Geom."},{"issue":"2","key":"10.1016\/j.amc.2020.125702_bib0031","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1287\/moor.1100.0449","article-title":"Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-\u0141ojasiewicz inequality","volume":"35","author":"Attouch","year":"2010","journal-title":"Math. Oper. Res."},{"issue":"1\u20132","key":"10.1016\/j.amc.2020.125702_bib0032","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1007\/s10107-011-0481-z","article-title":"Global error bounds for piecewise convex polynomials","volume":"137","author":"Li","year":"2013","journal-title":"Math. Program."},{"key":"10.1016\/j.amc.2020.125702_bib0033","unstructured":"M. Fornasier, J. Maly, V. Naumova, Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements, arXiv preprint arXiv:1801.06240(2018)."},{"issue":"11","key":"10.1016\/j.amc.2020.125702_bib0034","doi-asserted-by":"crossref","first-page":"1877","DOI":"10.1002\/cpa.21504","article-title":"Suprema of chaos processes and the restricted isometry property","volume":"67","author":"Krahmer","year":"2014","journal-title":"Commun. Pure Appl. Math."},{"issue":"4","key":"10.1016\/j.amc.2020.125702_bib0035","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1037\/a0033872","article-title":"The intrinsic memorability of face photographs.","volume":"142","author":"Bainbridge","year":"2013","journal-title":"J. Exp. Psychol.: Gen."},{"key":"10.1016\/j.amc.2020.125702_bib0036","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1561","article-title":"Nonnegative sparse PCA","author":"Zass","year":"2007"},{"issue":"4","key":"10.1016\/j.amc.2020.125702_bib0037","doi-asserted-by":"crossref","first-page":"1651","DOI":"10.1111\/1540-6261.00580","article-title":"Risk reduction in large portfolios: why imposing the wrong constraints helps","volume":"58","author":"Jagannathan","year":"2003","journal-title":"J. Finance"},{"key":"10.1016\/j.amc.2020.125702_bib0038","series-title":"Biocomputing 2005","first-page":"447","article-title":"Sparse factorizations of gene expression data guided by binding data","author":"Badea","year":"2005"},{"issue":"6755","key":"10.1016\/j.amc.2020.125702_bib0039","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"journal-title":"Appl. Comput. Harmon. Anal.","article-title":"Adaptive multi-penalty regularization based on a generalized lasso path","year":"2018","author":"Grasmair","key":"10.1016\/j.amc.2020.125702_bib0040"},{"key":"10.1016\/j.amc.2020.125702_bib0041","series-title":"Proceedings of the 2017 International Conference on Sampling Theory and Applications (SampTA)","first-page":"509","article-title":"Refined performance guarantees for sparse power factorization","author":"Geppert","year":"2017"}],"container-title":["Applied Mathematics and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S009630032030655X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S009630032030655X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,19]],"date-time":"2021-01-19T04:04:56Z","timestamp":1611029096000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S009630032030655X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":41,"alternative-id":["S009630032030655X"],"URL":"https:\/\/doi.org\/10.1016\/j.amc.2020.125702","relation":{},"ISSN":["0096-3003"],"issn-type":[{"type":"print","value":"0096-3003"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics and Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.amc.2020.125702","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"125702"}}