{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T06:34:08Z","timestamp":1723790048793},"reference-count":24,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,10,1]],"date-time":"2017-10-01T00:00:00Z","timestamp":1506816000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics and Computation"],"published-print":{"date-parts":[[2017,10]]},"DOI":"10.1016\/j.amc.2017.04.020","type":"journal-article","created":{"date-parts":[[2017,5,1]],"date-time":"2017-05-01T23:15:47Z","timestamp":1493680547000},"page":"75-88","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["A tenth orderA<\/mml:mi><\/mml:math>-stable two-step hybrid block method for solving initial value problems of ODEs"],"prefix":"10.1016","volume":"310","author":[{"given":"Higinio","family":"Ramos","sequence":"first","affiliation":[]},{"given":"Gurjinder","family":"Singh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.amc.2017.04.020_bib0001","series-title":"Numerical Solution of Differential Equations","author":"Milne","year":"1953"},{"key":"10.1016\/j.amc.2017.04.020_bib0002","unstructured":"D. Sarafyan, Multi-step Methods for the Numerical Solution of Ordinary Differential Equations Made Self-Starting, Technical Report 495, Mathematics Research Center, Madison. (1965)."},{"key":"10.1016\/j.amc.2017.04.020_bib0003","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1137\/1009069","article-title":"A Runge-Kutta for all reasons","volume":"9","author":"Rosser","year":"1967","journal-title":"SIAM Rev."},{"key":"10.1016\/j.amc.2017.04.020_bib0004","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1090\/S0025-5718-1969-0264854-5","article-title":"Block implicit one-step methods","volume":"23","author":"Shampine","year":"1969","journal-title":"Math. Comp."},{"key":"10.1016\/j.amc.2017.04.020_bib0005","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1080\/00207169108804026","article-title":"Block methods for second order odes","volume":"41","author":"Fatunla","year":"1991","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.amc.2017.04.020_bib0006","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/0168-9274(92)90021-5","article-title":"A-stable parallel block methods for ordinary and integro-differential equations","volume":"9","author":"Sommeijer","year":"1992","journal-title":"Appl. Num. Math."},{"key":"10.1016\/j.amc.2017.04.020_bib0007","series-title":"Solving Differential Problems by Multi-step Initial and Boundary Value Methods","author":"Brugnano","year":"1998"},{"key":"10.1016\/j.amc.2017.04.020_bib0008","first-page":"457","article-title":"A sixth order linear multi-step method for the direct solution of y\u2032\u2032=f(x,y,y\u2032)","volume":"40","author":"Jator","year":"2007","journal-title":"Int. J. Pure Appl. Math."},{"key":"10.1016\/j.amc.2017.04.020_bib0009","first-page":"239","article-title":"Explicit and implicit 3-point block methods for solving special second order ordinary differential equations directly","volume":"3","author":"Ismail","year":"2009","journal-title":"Int. J. Math. Anal."},{"key":"10.1016\/j.amc.2017.04.020_bib0010","unstructured":"T.A. Anake, Continuous implicit hybrid one-step methods for the solution of initial value problems of general second-order ordinary differential equations (Ph. D. Thesis), Covenant University, Nigeria(2011)."},{"issue":"3","key":"10.1016\/j.amc.2017.04.020_bib0011","first-page":"181","article-title":"Modified block method for the direct solution of second order ordinary differential equation","volume":"3","author":"Awoyemi","year":"2011","journal-title":"Int. J. Appl. Math. Comp."},{"key":"10.1016\/j.amc.2017.04.020_bib0012","article-title":"A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs","author":"Ramos","year":"2016","journal-title":"J. Comp. Appl. Math."},{"key":"10.1016\/j.amc.2017.04.020_bib0013","doi-asserted-by":"crossref","DOI":"10.1007\/s11075-015-0081-8","article-title":"An optimized two-step hybrid block method for solving general second order initial-value problems","author":"Ramos","year":"2016","journal-title":"Numer. Algorithms"},{"issue":"4","key":"10.1016\/j.amc.2017.04.020_bib0014","first-page":"172","article-title":"Eight order backward differentiation formula with continuous coefficients for stiff ordinary differential equations","volume":"17","author":"Akinfenwa","year":"2011","journal-title":"Int. J. Math. Comput. Sci."},{"key":"10.1016\/j.amc.2017.04.020_bib0015","article-title":"Third derivative hybrid block integrator for solution of stiff systems of initial value problems","author":"Akinfenwa","year":"2016","journal-title":"Afr. Mat."},{"key":"10.1016\/j.amc.2017.04.020_bib0016","series-title":"Solving Ordinary Differential Equations-II: Stiff and Differential-Algebraic Problems","author":"Hairer","year":"1996"},{"key":"10.1016\/j.amc.2017.04.020_bib0017","unstructured":"L.F. Shampine, M.K. Gordon, Computer Solutions of Ordinary differential Equations: The Initial Value Problem, Freeman, San Francisco, CA1975."},{"key":"10.1016\/j.amc.2017.04.020_bib0018","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/0377-0427(83)90040-7","article-title":"Starting step-size for an ODE solver","volume":"9","author":"Watts","year":"1983","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.amc.2017.04.020_bib0019","unstructured":"A.E. Sedgwick, An effective variable order variable step adams method, Report 53. Department of Computer Science, University of Toronto, Toronto, Canada (1973)."},{"key":"10.1016\/j.amc.2017.04.020_bib0020","series-title":"Numerical Methods for Ordinary Differential Equations","author":"Butcher","year":"2008"},{"issue":"1","key":"10.1016\/j.amc.2017.04.020_bib0021","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1080\/00207160304663","article-title":"New L-stable modified trapezoidal methods for the initial value problems","volume":"80","author":"Yaakub","year":"2003","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.amc.2017.04.020_bib0022","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1080\/00207168908803763","article-title":"Extended one-step methods for the numerical solution of ordinary differential equations","volume":"29","author":"Jacques","year":"1988","journal-title":"Inter. J. Comput. Math."},{"issue":"1","key":"10.1016\/j.amc.2017.04.020_bib0023","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/0771-050X(78)90016-5","article-title":"A-stable one-step methods with step-size control for stiff systems of ordinary differential equations","volume":"4","author":"Ren\u00e9","year":"1978","journal-title":"J. Comput. Appl. Math."},{"issue":"10","key":"10.1016\/j.amc.2017.04.020_bib0024","first-page":"37","article-title":"A(\u03b1)-stable order ten second derivative block multi-step method for stiff initial value problems","volume":"2","author":"Kumleng","year":"2014","journal-title":"Ints. J. Math. Stat. Invest."}],"container-title":["Applied Mathematics and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300317302722?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300317302722?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,2]],"date-time":"2018-09-02T02:22:30Z","timestamp":1535854950000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0096300317302722"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,10]]},"references-count":24,"alternative-id":["S0096300317302722"],"URL":"https:\/\/doi.org\/10.1016\/j.amc.2017.04.020","relation":{},"ISSN":["0096-3003"],"issn-type":[{"value":"0096-3003","type":"print"}],"subject":[],"published":{"date-parts":[[2017,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A tenth order -stable two-step hybrid block method for solving initial value problems of ODEs","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics and Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.amc.2017.04.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}