{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T03:44:10Z","timestamp":1726458250143},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,6,1]],"date-time":"2015-06-01T00:00:00Z","timestamp":1433116800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics and Computation"],"published-print":{"date-parts":[[2015,6]]},"DOI":"10.1016\/j.amc.2015.03.052","type":"journal-article","created":{"date-parts":[[2015,4,1]],"date-time":"2015-04-01T10:30:42Z","timestamp":1427884242000},"page":"106-125","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Alternating direction method for generalized Sylvester matrix equation AXB + CYD = E"],"prefix":"10.1016","volume":"260","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0767-7722","authenticated-orcid":false,"given":"Yi-Fen","family":"Ke","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5936-789X","authenticated-orcid":false,"given":"Chang-Feng","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.amc.2015.03.052_bib0001","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1137\/040615791","article-title":"Best approximate solution of matrix equation AXB + CYD = E","volume":"27","author":"Liao","year":"2005","journal-title":"SIAM J. Matrix. Anal. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0002","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/0024-3795(80)90189-5","article-title":"The matrix equation AXB + CYD = E","volume":"30","author":"Baksalary","year":"1980","journal-title":"Linear Algebra Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0003","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/0024-3795(87)90104-2","article-title":"Singular value and generalized value decomposition and the solution of linear matrix equations","volume":"87","author":"Chu","year":"1987","journal-title":"Linear Algebra Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0004","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1080\/03081089508818358","article-title":"The matrix equation AXB + CYD = E over a simple Artinian ring","volume":"38","author":"Huang","year":"1995","journal-title":"Linear Multilinear Algebra"},{"key":"10.1016\/j.amc.2015.03.052_bib0005","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1137\/0612044","article-title":"The equation AXB + CYD = E over a principal ideal domain","volume":"12","author":"\u00d6zg\u00fcler","year":"1991","journal-title":"SIAM J. Matrix. Anal. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0006","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/S0024-3795(97)10099-4","article-title":"On solution of matrix equation AXB + CYD = F","volume":"279","author":"Xu","year":"1998","journal-title":"Linear Algebra Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0007","first-page":"8002","article-title":"Least squares solution of matrix equation AXB* + CYD* = E","volume":"3","author":"Shim","year":"2003","journal-title":"SIAM J. Matrix. Anal. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0008","first-page":"203","article-title":"Least squares symmetric solution of the matrix equation AXB + CYD = E with the least norm","volume":"29","author":"Yuan","year":"2007","journal-title":"Math. Numer. Sinica"},{"key":"10.1016\/j.amc.2015.03.052_bib0009","doi-asserted-by":"crossref","first-page":"3030","DOI":"10.1016\/j.cam.2009.11.052","article-title":"An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB + CYD = E","volume":"233","author":"Sheng","year":"2010","journal-title":"J. Comput. Appl. Math."},{"issue":"2","key":"10.1016\/j.amc.2015.03.052_bib0010","first-page":"35","article-title":"Iterative method for mirror-symmetric solution of matrix equation AXB + CYD = E","volume":"36","author":"Li","year":"2010","journal-title":"B. Iran. Math. Soc."},{"issue":"7","key":"10.1016\/j.amc.2015.03.052_bib0011","doi-asserted-by":"crossref","first-page":"2578","DOI":"10.1016\/j.amc.2009.08.051","article-title":"The submatrix constraint problem of matrix equation AXB + CYD = E","volume":"215","author":"Li","year":"2009","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.amc.2015.03.052_bib0012","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.amc.2013.10.065","article-title":"Least squares solutions of the matrix equation AXB + CYD = E with the least norm for symmetric arrowhead matrices","volume":"226","author":"Li","year":"2014","journal-title":"Appl. Math. Comput."},{"issue":"3","key":"10.1016\/j.amc.2015.03.052_bib0013","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1080\/00207160.2012.722626","article-title":"Least-squares problem for the quaternion matrix equation AXB + CYD = E over different constrained matrices","volume":"90","author":"Yuan","year":"2013","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.amc.2015.03.052_bib0014","article-title":"On solutions to the quaternion matrix equation AXB + CYD = E","volume":"17","author":"Wang","year":"2008","journal-title":"Electron. J. Linear Algebra"},{"issue":"3","key":"10.1016\/j.amc.2015.03.052_bib0015","first-page":"392","article-title":"The equations AX \u2212 YB = C and AX \u2212 XB = C in matrices","volume":"3","author":"Roth","year":"1952","journal-title":"Proc. Amer. Math. Soc."},{"issue":"10","key":"10.1016\/j.amc.2015.03.052_bib0016","doi-asserted-by":"crossref","first-page":"1409","DOI":"10.1016\/j.camwa.2014.09.009","article-title":"A preconditioned nested splitting conjugate gradient iterative method for the large sparse generalized Sylvester equation","volume":"68","author":"Ke","year":"2014","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0017","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1002\/asjc.328","article-title":"A relaxed gradient based algorithm for solving Sylvester equations","volume":"13","author":"Niu","year":"2011","journal-title":"Asian J. Control"},{"key":"10.1016\/j.amc.2015.03.052_bib0018","doi-asserted-by":"crossref","first-page":"2117","DOI":"10.1016\/j.mcm.2011.05.021","article-title":"A finite iterative algorithm for solving the generalized (P, Q)-reflexive solution of the linear systems of matrix equations","volume":"54","author":"Wang","year":"2011","journal-title":"Math. Comput. Model"},{"key":"10.1016\/j.amc.2015.03.052_bib0019","doi-asserted-by":"crossref","first-page":"607","DOI":"10.2298\/FIL1203607W","article-title":"The optimal convergence factor of the gradient based iterative algorithm for linear matrix equations","volume":"26","author":"Wang","year":"2012","journal-title":"Filomat"},{"key":"10.1016\/j.amc.2015.03.052_bib0020","doi-asserted-by":"crossref","first-page":"5620","DOI":"10.1016\/j.amc.2011.11.055","article-title":"A modified gradient based algorithm for solving Sylvester equation","volume":"218","author":"Wang","year":"2012","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.amc.2015.03.052_bib0021","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1016\/j.camwa.2012.11.010","article-title":"On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB = C","volume":"65","author":"Wang","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0022","doi-asserted-by":"crossref","first-page":"2352","DOI":"10.1016\/j.camwa.2013.09.011","article-title":"On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation AX + XB = C","volume":"66","author":"Wang","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0023","first-page":"547","article-title":"A finite iterative algorithm for solving the least-norm generalized (P, Q)-reflexive solution of the matrix equation AiXBi = Ci","volume":"17","author":"Peng","year":"2014","journal-title":"J. Comput. Anal. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0024","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1002\/nla.470","article-title":"An efficient iterative method for solving the matrix equation AXB + CYD = E","volume":"13","author":"Peng","year":"2006","journal-title":"Numer. Linear Algebra"},{"key":"10.1016\/j.amc.2015.03.052_bib0025","unstructured":"D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation, Prentice Hall, 1989."},{"key":"10.1016\/j.amc.2015.03.052_bib0026","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1007\/BF01581204","article-title":"On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators","volume":"55","author":"Eckstein","year":"1992","journal-title":"Math. Program."},{"issue":"5","key":"10.1016\/j.amc.2015.03.052_bib0027","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/BF00927673","article-title":"Multiplier and gradient methods","volume":"4","author":"Hestenes","year":"1969","journal-title":"J. Optimiz. Theor. Appl."},{"first-page":"283","article-title":"A method for nonlinear constraints in minimization problems","year":"1972","author":"Powell","key":"10.1016\/j.amc.2015.03.052_bib0028"},{"issue":"1","key":"10.1016\/j.amc.2015.03.052_bib0029","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/0898-1221(76)90003-1","article-title":"A dual algorithm for the solution of nonlinear variational problems via finite element approximation","volume":"2","author":"Gabay","year":"1976","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.amc.2015.03.052_bib0030","doi-asserted-by":"crossref","unstructured":"R. Glowinski, P.L. Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, 1989.","DOI":"10.1137\/1.9781611970838"},{"issue":"2","key":"10.1016\/j.amc.2015.03.052_bib0031","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1090\/S0002-9947-1956-0084194-4","article-title":"On the numerical solution of heat conduction problems in two and three space variables","volume":"82","author":"Douglas","year":"1956","journal-title":"Trans. Amer. Math. Soc."},{"issue":"1","key":"10.1016\/j.amc.2015.03.052_bib0032","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1007\/BF00247655","article-title":"Application of the alternating direction method of multipliers to separable convex programming problems","volume":"1","author":"Fukushima","year":"1992","journal-title":"Comput. Optim. Appl."},{"issue":"1","key":"10.1016\/j.amc.2015.03.052_bib0033","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/s101070100280","article-title":"A new inexact alternating directions method for monotone variational inequalities","volume":"92","author":"He","year":"2002","journal-title":"Math. Program."},{"key":"10.1016\/j.amc.2015.03.052_bib0034","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/S0167-6377(98)00044-3","article-title":"Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities","volume":"23","author":"He","year":"1998","journal-title":"Oper. Res. Lett."},{"issue":"1","key":"10.1016\/j.amc.2015.03.052_bib0035","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1137\/0329006","article-title":"Applications of a splitting algorithm to decomposition in convex programming and variational inequalities","volume":"29","author":"Tseng","year":"1991","journal-title":"SIAM J. Control Optim."},{"issue":"1","key":"10.1016\/j.amc.2015.03.052_bib0036","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1137\/090777761","article-title":"Alternating direction algorithms for \u21131-problems in compressive sensing","volume":"33","author":"Yang","year":"2011","journal-title":"SIAM J. Sci. Comput."},{"issue":"2","key":"10.1016\/j.amc.2015.03.052_bib0037","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1007\/s11464-012-0194-5","article-title":"An alternating direction algorithm for matrix completion with nonnegative factors","volume":"7","author":"Xu","year":"2012","journal-title":"Front. Math. China"},{"key":"10.1016\/j.amc.2015.03.052_bib0038","doi-asserted-by":"crossref","unstructured":"R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.","DOI":"10.1515\/9781400873173"},{"key":"10.1016\/j.amc.2015.03.052_bib0039","doi-asserted-by":"crossref","unstructured":"Y. Nesterov, I.U.E. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, 2004.","DOI":"10.1007\/978-1-4419-8853-9"},{"key":"10.1016\/j.amc.2015.03.052_bib0040","doi-asserted-by":"crossref","unstructured":"P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cambridge University Press, 1989.","DOI":"10.1017\/9781139171984"},{"key":"10.1016\/j.amc.2015.03.052_bib0041","unstructured":"D. Bertsekas, Convex Analysis and Optimization, in: Angelia Nedic and Asuman E. Ozdaglar (Contributors). Athena Scientific, 2003."}],"container-title":["Applied Mathematics and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300315003665?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300315003665?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,22]],"date-time":"2019-08-22T18:05:26Z","timestamp":1566497126000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0096300315003665"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,6]]},"references-count":41,"alternative-id":["S0096300315003665"],"URL":"https:\/\/doi.org\/10.1016\/j.amc.2015.03.052","relation":{},"ISSN":["0096-3003"],"issn-type":[{"type":"print","value":"0096-3003"}],"subject":[],"published":{"date-parts":[[2015,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Alternating direction method for generalized Sylvester matrix equation AXB + CYD = E","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics and Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.amc.2015.03.052","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}