{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T17:10:00Z","timestamp":1723223400079},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,4,1]],"date-time":"2015-04-01T00:00:00Z","timestamp":1427846400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics and Computation"],"published-print":{"date-parts":[[2015,4]]},"DOI":"10.1016\/j.amc.2014.12.131","type":"journal-article","created":{"date-parts":[[2015,2,2]],"date-time":"2015-02-02T19:59:26Z","timestamp":1422907166000},"page":"183-191","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Upper bound of decay rate for solutions to the Navier\u2013Stokes\u2013Voigt equations in R<\/mml:mi><\/mml:mrow>3<\/mml:mn><\/mml:mrow><\/mml:msup><\/mml:mrow><\/mml:math>"],"prefix":"10.1016","volume":"256","author":[{"given":"Caidi","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Hongjin","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.amc.2014.12.131_b0005","series-title":"Sobolev Spaces","author":"Adams","year":"1975"},{"key":"10.1016\/j.amc.2014.12.131_b0010","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1016\/j.anihpc.2007.07.003","article-title":"On questions of decay and existence for the viscous Camassa\u2013Holm equations","volume":"25","author":"Bjorland","year":"2008","journal-title":"Ann. I.H. Poincar\u00e9-NA"},{"key":"10.1016\/j.amc.2014.12.131_b0015","doi-asserted-by":"crossref","first-page":"5057","DOI":"10.1090\/S0002-9947-2012-05432-8","article-title":"Large time decay and growth for solutions of a viscous Boussinesq system","volume":"364","author":"Brandolese","year":"2012","journal-title":"Trans. Am. Math. Soc."},{"key":"10.1016\/j.amc.2014.12.131_b0020","doi-asserted-by":"crossref","first-page":"823","DOI":"10.4310\/CMS.2006.v4.n4.a8","article-title":"Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models","volume":"4","author":"Cao","year":"2006","journal-title":"Commun. Math. Sci."},{"key":"10.1016\/j.amc.2014.12.131_b0025","doi-asserted-by":"crossref","first-page":"2138","DOI":"10.1080\/03605302.2012.729172","article-title":"Asymptotic behavior of solutions to liquid crystal systems in R3","volume":"37","author":"Dai","year":"2012","journal-title":"Comm. Partial Diff. Eq."},{"key":"10.1016\/j.amc.2014.12.131_b0030","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1016\/j.jmaa.2004.05.032","article-title":"Large time behavior to the system of incompressible non-Newtonian fluids in R2","volume":"298","author":"Dong","year":"2004","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.amc.2014.12.131_b0035","doi-asserted-by":"crossref","first-page":"1386","DOI":"10.1016\/j.jmaa.2007.01.047","article-title":"On upper and lower bounds of higher order derivatives for solutions to the 2D micropolar fluid equations","volume":"334","author":"Dong","year":"2007","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.amc.2014.12.131_b0040","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1016\/j.nonrwa.2011.09.013","article-title":"Random dynamics of the 3D stochastic Navier\u2013Stokes\u2013Voigt equations","volume":"13","author":"Gao","year":"2012","journal-title":"Nonlinear Anal. (RWA)"},{"key":"10.1016\/j.amc.2014.12.131_b0045","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1088\/0951-7715\/25\/4\/905","article-title":"Pullback attractors for three-dimensional non-autonomous Navier\u2013Stokes\u2013Voigt equations","volume":"25","author":"Garc\u00eda-Luengo","year":"2012","journal-title":"Nonlinearity"},{"key":"10.1016\/j.amc.2014.12.131_b0050","first-page":"50","article-title":"Attractors for some nonlinear problems of mathematical physics","volume":"152","author":"Kalantarov","year":"1986","journal-title":"Zap. Nauchn. Sem. LOMI"},{"key":"10.1016\/j.amc.2014.12.131_b0055","unstructured":"V.K. Kalantarov, Global Behavior of Solutions of Nonlinear Equations of Mathematical Physics of Classical and Non-Classical Type, Postdoctoral Thesis, St. Petersburg, 1988."},{"key":"10.1016\/j.amc.2014.12.131_b0060","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1007\/s00332-008-9029-7","article-title":"Gevrey regularity for the global attractor of the 3D Navier\u2013Stokes\u2013Voigt equations","volume":"19","author":"Kalantarov","year":"2009","journal-title":"J. Nonlinear Sci."},{"issue":"6","key":"10.1016\/j.amc.2014.12.131_b0065","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1007\/s11401-009-0205-3","article-title":"Global attractors and determining modes for the 3D Navier\u2013Stokes\u2013Voigt equations","volume":"30B","author":"Kalantarov","year":"2009","journal-title":"Chi. Ann. Math."},{"key":"10.1016\/j.amc.2014.12.131_b0070","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1007\/BF02673588","article-title":"In memory of A.P. Olskolkov","volume":"99","author":"Ladyzhenskaya","year":"2000","journal-title":"J. Math. Sci."},{"key":"10.1016\/j.amc.2014.12.131_b0075","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1007\/s00220-007-0327-y","article-title":"Decay of weak solutions to the 2D dissipative quasi-geostrophic equation","volume":"276","author":"Niche","year":"2007","journal-title":"Comm. Math. Phys."},{"key":"10.1016\/j.amc.2014.12.131_b0080","first-page":"98","article-title":"The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers","volume":"38","author":"Oskolkov","year":"1973","journal-title":"Zap. Nauchn. Sem. LOMI"},{"key":"10.1016\/j.amc.2014.12.131_b0085","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1007\/BF02112340","article-title":"Theory of nonstationary flows of Kelvin\u2013Voigt fluids","volume":"28","author":"Oskolkov","year":"1985","journal-title":"J. Math. Sci."},{"key":"10.1016\/j.amc.2014.12.131_b0090","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1016\/j.nonrwa.2011.08.025","article-title":"Averaging of a 3D Navier\u2013Stokes\u2013Voigt equation with singularly oscillating forces","volume":"13","author":"Qin","year":"2012","journal-title":"Nonlinear Anal. (RWA)"},{"key":"10.1016\/j.amc.2014.12.131_b0095","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/BF00752111","article-title":"L2 decay for weak solutions of the Navier\u2013Stokes equations","volume":"88","author":"Schonbek","year":"1985","journal-title":"Arch. Ration. Mech. Anal."},{"key":"10.1016\/j.amc.2014.12.131_b0100","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1080\/03605308608820443","article-title":"Large time behavior of solutions to the Navier\u2013Stokes equations","volume":"11","author":"Schonbek","year":"1986","journal-title":"Comm. Partial Diff. Eq."},{"key":"10.1016\/j.amc.2014.12.131_b0105","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1090\/S0894-0347-1991-1103459-2","article-title":"Lower bounds of rate of decay for solutions to the Navier\u2013Stokes equations","volume":"4","author":"Schonbek","year":"1991","journal-title":"J. Am. Math. Soc."},{"key":"10.1016\/j.amc.2014.12.131_b0110","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1080\/03605309508821088","article-title":"Large time behaviour of solutions to the Navier\u2013Stokes equations in Hm spaces","volume":"20","author":"Schonbek","year":"1995","journal-title":"Comm. Partial Diff. Eq."},{"key":"10.1016\/j.amc.2014.12.131_b0115","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1017\/S0308210500022976","article-title":"On the decay of higher order norms of the solutions of Navier\u2013Stokes equations","volume":"126","author":"Schonbek","year":"1996","journal-title":"Proc. Roy. Soc. Edin."},{"key":"10.1016\/j.amc.2014.12.131_b0120","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1080\/03605309508821089","article-title":"Sharp rate of decay of solutions to 2-dimensional Navier\u2013Stokes equations","volume":"20","author":"Zhang","year":"1995","journal-title":"Comm. Partial Diff. Eq."},{"key":"10.1016\/j.amc.2014.12.131_b0125","first-page":"185","article-title":"On the modified Navier\u2013Stokes equations in n-dimensional spaces","volume":"32","author":"Zhang","year":"2004","journal-title":"Bull. Inst. Math. Acad. Sin."},{"key":"10.1016\/j.amc.2014.12.131_b0130","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s10255-004-0149-z","article-title":"Dissipation and decay estimates","volume":"20","author":"Zhang","year":"2004","journal-title":"Acta Math. Appl. Sin. Engl. Ser."},{"key":"10.1016\/j.amc.2014.12.131_b0135","doi-asserted-by":"crossref","first-page":"3470","DOI":"10.1016\/j.jde.2008.04.016","article-title":"New results of general n-dimensional incompressible Navier\u2013Stokes equations","volume":"245","author":"Zhang","year":"2008","journal-title":"J. Diff. Eq."},{"key":"10.1016\/j.amc.2014.12.131_b0140","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.nonrwa.2013.08.001","article-title":"Upper and lower bound of the time decay rate for the solutions of a class of third grade fluids","volume":"15","author":"Zhao","year":"2014","journal-title":"Nonlinear Anal. (RWA)"}],"container-title":["Applied Mathematics and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300314017925?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300314017925?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,8,12]],"date-time":"2022-08-12T00:13:08Z","timestamp":1660263188000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0096300314017925"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,4]]},"references-count":28,"alternative-id":["S0096300314017925"],"URL":"https:\/\/doi.org\/10.1016\/j.amc.2014.12.131","relation":{},"ISSN":["0096-3003"],"issn-type":[{"value":"0096-3003","type":"print"}],"subject":[],"published":{"date-parts":[[2015,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Upper bound of decay rate for solutions to the Navier\u2013Stokes\u2013Voigt equations in","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics and Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.amc.2014.12.131","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}