{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T13:53:23Z","timestamp":1723211603416},"reference-count":23,"publisher":"Elsevier BV","content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Mathematics and Computation"],"published-print":{"date-parts":[[2014,3]]},"DOI":"10.1016\/j.amc.2013.06.102","type":"journal-article","created":{"date-parts":[[2014,1,20]],"date-time":"2014-01-20T21:15:21Z","timestamp":1390252521000},"page":"383-394","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["Wavelet operational matrix method for solving fractional differential equations with variable coefficients"],"prefix":"10.1016","volume":"230","author":[{"given":"Mingxu","family":"Yi","sequence":"first","affiliation":[]},{"given":"Jun","family":"Huang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.amc.2013.06.102_b0005","doi-asserted-by":"crossref","first-page":"2276","DOI":"10.1016\/j.amc.2010.03.063","article-title":"Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations","volume":"216","author":"Li","year":"2010","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.amc.2013.06.102_b0010","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1140\/epjst\/e2011-01390-6","article-title":"A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems","volume":"193","author":"Sun","year":"2011","journal-title":"Eur. Phys. J. Spec. Top."},{"issue":"14","key":"10.1016\/j.amc.2013.06.102_b0015","doi-asserted-by":"crossref","first-page":"2719","DOI":"10.1016\/j.physa.2010.02.030","article-title":"Fractional differential models for anomalous diffusion","volume":"389","author":"Sun","year":"2010","journal-title":"Phys. A Stat. Mech. Appl."},{"issue":"5","key":"10.1016\/j.amc.2013.06.102_b0020","first-page":"616","article-title":"Analysis of stability and convergence of numerical approximation for the riesz fractional reaction-dispersion equation","volume":"46","author":"Chen","year":"2007","journal-title":"J. Xiamen Univ."},{"key":"10.1016\/j.amc.2013.06.102_b0025","doi-asserted-by":"crossref","first-page":"304","DOI":"10.2514\/3.20641","article-title":"Fractional order state equations for the control of viscoelastically damped structures","volume":"14","author":"Bagley","year":"1991","journal-title":"J. Guid. Control Dyn."},{"key":"10.1016\/j.amc.2013.06.102_b0030","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/BF01174319","article-title":"Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems","volume":"120","author":"Rossikhin","year":"1997","journal-title":"Acta Mech."},{"key":"10.1016\/j.amc.2013.06.102_b0035","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1016\/j.mcm.2009.12.034","article-title":"A study on the convergence of variational iteration method","volume":"51","author":"Odibat","year":"2010","journal-title":"Math. Comput. Modell."},{"key":"10.1016\/j.amc.2013.06.102_b0040","first-page":"372","article-title":"Convergence of the Adomian method applied to a class of nonlinear integral equations","volume":"21","author":"EI-Kalla","year":"2008","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.amc.2013.06.102_b0045","doi-asserted-by":"crossref","first-page":"1737","DOI":"10.1016\/j.amc.2006.03.027","article-title":"Adomian decomposition method for solution of nonlinear differential algebraic equations","volume":"181","author":"Hosseini","year":"2006","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.amc.2013.06.102_b0050","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.physleta.2007.05.083","article-title":"Generalized differential transform method for solving a space and time-fractional diffusion-wave equation","volume":"370","author":"Momani","year":"2007","journal-title":"Phys. Lett. A"},{"key":"10.1016\/j.amc.2013.06.102_b0055","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1016\/j.amc.2007.07.068","article-title":"Generalized differential transform method: application to differential equations of fractional order","volume":"197","author":"Odibat","year":"2008","journal-title":"Appl. Math. Comput."},{"issue":"3","key":"10.1016\/j.amc.2013.06.102_b0060","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1016\/j.cnsns.2007.09.014","article-title":"Homotopy analysis method for fractional IVPs","volume":"14","author":"Hashim","year":"2009","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"issue":"4","key":"10.1016\/j.amc.2013.06.102_b0065","doi-asserted-by":"crossref","first-page":"1250085","DOI":"10.1142\/S021812741250085X","article-title":"Finite difference schemes for variable-order time fractional diffusion equation","volume":"22","author":"Sun","year":"2012","journal-title":"Int. J. Bifurcation Chaos"},{"issue":"3","key":"10.1016\/j.amc.2013.06.102_b0070","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.jocs.2010.07.001","article-title":"Wavelet method for a class of fractional convection-diffusion equation with variable coefficients","volume":"1","author":"Chen","year":"2010","journal-title":"J. Comput. Sci."},{"issue":"3","key":"10.1016\/j.amc.2013.06.102_b0075","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1016\/j.camwa.2011.04.024","article-title":"Application of Legendre wavelets for solving fractional differential equations","volume":"62","author":"Jafari","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.amc.2013.06.102_b0080","doi-asserted-by":"crossref","first-page":"4163","DOI":"10.1016\/j.cnsns.2011.01.014","article-title":"The Legendre wavelet method for solving fractional differential equations","volume":"16","author":"Rehman","year":"2011","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.amc.2013.06.102_b0085","doi-asserted-by":"crossref","first-page":"2284","DOI":"10.1016\/j.cnsns.2009.09.020","article-title":"Solving a nonlinear fractional differential equation using Chebyshev wavelets","volume":"15","author":"Li","year":"2010","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.amc.2013.06.102_b0090","doi-asserted-by":"crossref","first-page":"1154","DOI":"10.1016\/j.cnsns.2010.05.036","article-title":"A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order","volume":"16","author":"Saeedi","year":"2011","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.amc.2013.06.102_b0095","doi-asserted-by":"crossref","first-page":"2146","DOI":"10.1016\/j.aml.2011.06.016","article-title":"A quadrature tau method for fractional differential equations with variable coefficients","volume":"24","author":"Bhrawy","year":"2011","journal-title":"Appl. Math. Lett."},{"issue":"4","key":"10.1016\/j.amc.2013.06.102_b0100","doi-asserted-by":"crossref","first-page":"1549","DOI":"10.1016\/j.cnsns.2011.08.041","article-title":"Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods","volume":"17","author":"Garra","year":"2012","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.amc.2013.06.102_b0105","series-title":"Fractional Differential Equations","author":"Podlubny","year":"1999"},{"key":"10.1016\/j.amc.2013.06.102_b0120","doi-asserted-by":"crossref","first-page":"5239","DOI":"10.1016\/j.amc.2011.11.007","article-title":"On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation","volume":"218","author":"Saha Ray","year":"2012","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.amc.2013.06.102_b0115","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1049\/ip-cta:19970702","article-title":"Haar wavelet method for solving lumped and distributed-parameter systems","volume":"144","author":"Chen","year":"1997","journal-title":"IEE Proc. Control Theory Appl."}],"container-title":["Applied Mathematics and Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300313012186?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0096300313012186?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,7]],"date-time":"2018-10-07T02:31:55Z","timestamp":1538879515000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0096300313012186"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,3]]},"references-count":23,"alternative-id":["S0096300313012186"],"URL":"https:\/\/doi.org\/10.1016\/j.amc.2013.06.102","relation":{},"ISSN":["0096-3003"],"issn-type":[{"value":"0096-3003","type":"print"}],"subject":[],"published":{"date-parts":[[2014,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Wavelet operational matrix method for solving fractional differential equations with variable coefficients","name":"articletitle","label":"Article Title"},{"value":"Applied Mathematics and Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.amc.2013.06.102","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Crown copyright \u00a9 2013 Published by Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}