{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,6]],"date-time":"2024-12-06T06:10:22Z","timestamp":1733465422112,"version":"3.30.1"},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.aei.2024.102823","type":"journal-article","created":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T20:59:53Z","timestamp":1726347593000},"page":"102823","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PC","title":["DAUP: Enhancing point cloud homogeneity for 3D industrial anomaly detection via density-aware point cloud upsampling"],"prefix":"10.1016","volume":"62","author":[{"given":"Hefei","family":"Li","sequence":"first","affiliation":[]},{"given":"Yanchang","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Haonan","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Mo","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5600-7055","authenticated-orcid":false,"given":"Biqing","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Ruibin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jingxian","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aei.2024.102823_b1","doi-asserted-by":"crossref","unstructured":"M. Rudolph, T. Wehrbein, B. Rosenhahn, B. Wandt, Asymmetric student-teacher networks for industrial anomaly detection, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 2592\u20132602.","DOI":"10.1109\/WACV56688.2023.00262"},{"key":"10.1016\/j.aei.2024.102823_b2","doi-asserted-by":"crossref","unstructured":"E. Horwitz, Y. Hoshen, Back to the feature: classical 3d features are (almost) all you need for 3d anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2967\u20132976.","DOI":"10.1109\/CVPRW59228.2023.00298"},{"key":"10.1016\/j.aei.2024.102823_b3","doi-asserted-by":"crossref","unstructured":"Y. Wang, J. Peng, J. Zhang, R. Yi, Y. Wang, C. Wang, Multimodal Industrial Anomaly Detection via Hybrid Fusion, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8032\u20138041.","DOI":"10.1109\/CVPR52729.2023.00776"},{"key":"10.1016\/j.aei.2024.102823_b4","unstructured":"Y.-M. Chu, C. Liu, T.-I. Hsieh, H.-T. Chen, T.-L. Liu, Shape-Guided Dual-Memory Learning for 3D Anomaly Detection, in: Proceedings of the 40th International Conference on Machine Learning, 2023, pp. 6185\u20136194."},{"year":"2021","series-title":"The mvtec 3d-ad dataset for unsupervised 3d anomaly detection and localization","author":"Bergmann","key":"10.1016\/j.aei.2024.102823_b5"},{"key":"10.1016\/j.aei.2024.102823_b6","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","volume":"30","author":"Qi","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.aei.2024.102823_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108684","article-title":"Spatial information enhancement network for 3D object detection from point cloud","volume":"128","author":"Li","year":"2022","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.aei.2024.102823_b8","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/TVCG.2003.1175093","article-title":"Computing and rendering point set surfaces","volume":"9","author":"Alexa","year":"2003","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"issue":"3","key":"10.1016\/j.aei.2024.102823_b9","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1145\/1276377.1276405","article-title":"Parameterization-free projection for geometry reconstruction","volume":"26","author":"Lipman","year":"2007","journal-title":"ACM Trans. Graph."},{"issue":"1","key":"10.1016\/j.aei.2024.102823_b10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2421636.2421645","article-title":"Edge-aware point set resampling","volume":"32","author":"Huang","year":"2013","journal-title":"ACM Trans. Graph."},{"issue":"6","key":"10.1016\/j.aei.2024.102823_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2816795.2818065","article-title":"Deep points consolidation","volume":"34","author":"Wu","year":"2015","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.aei.2024.102823_b12","doi-asserted-by":"crossref","unstructured":"L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, P.-A. Heng, Pu-net: Point cloud upsampling network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2790\u20132799.","DOI":"10.1109\/CVPR.2018.00295"},{"key":"10.1016\/j.aei.2024.102823_b13","doi-asserted-by":"crossref","unstructured":"R. Li, X. Li, C.-W. Fu, D. Cohen-Or, P.-A. Heng, Pu-gan: a point cloud upsampling adversarial network, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 7203\u20137212.","DOI":"10.1109\/ICCV.2019.00730"},{"key":"10.1016\/j.aei.2024.102823_b14","doi-asserted-by":"crossref","unstructured":"G. Qian, A. Abualshour, G. Li, A. Thabet, B. Ghanem, Pu-gcn: Point cloud upsampling using graph convolutional networks, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11683\u201311692.","DOI":"10.1109\/CVPR46437.2021.01151"},{"key":"10.1016\/j.aei.2024.102823_b15","doi-asserted-by":"crossref","unstructured":"W. Feng, J. Li, H. Cai, X. Luo, J. Zhang, Neural points: Point cloud representation with neural fields for arbitrary upsampling, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18633\u201318642.","DOI":"10.1109\/CVPR52688.2022.01808"},{"key":"10.1016\/j.aei.2024.102823_b16","doi-asserted-by":"crossref","unstructured":"P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, MVTec AD\u2013A comprehensive real-world dataset for unsupervised anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9592\u20139600.","DOI":"10.1109\/CVPR.2019.00982"},{"key":"10.1016\/j.aei.2024.102823_b17","series-title":"2016 IEEE International Conference on Image Processing","first-page":"759","article-title":"Anomaly region detection and localization in metal surface inspection","author":"Vaikundam","year":"2016"},{"key":"10.1016\/j.aei.2024.102823_b18","series-title":"2009 Ninth International Conference on Intelligent Systems Design and Applications","first-page":"596","article-title":"Fully unsupervised learning of Gaussian mixtures for anomaly detection in hyperspectral imagery","author":"Veracini","year":"2009"},{"key":"10.1016\/j.aei.2024.102823_b19","doi-asserted-by":"crossref","unstructured":"K. Batzner, L. Heckler, R. K\u00f6nig, Efficientad: Accurate visual anomaly detection at millisecond-level latencies, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 128\u2013138.","DOI":"10.1109\/WACV57701.2024.00020"},{"year":"2021","series-title":"Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows","author":"Yu","key":"10.1016\/j.aei.2024.102823_b20"},{"key":"10.1016\/j.aei.2024.102823_b21","doi-asserted-by":"crossref","unstructured":"D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98\u2013107.","DOI":"10.1109\/WACV51458.2022.00188"},{"key":"10.1016\/j.aei.2024.102823_b22","doi-asserted-by":"crossref","unstructured":"H. Zhang, Z. Wu, Z. Wang, Z. Chen, Y.-G. Jiang, Prototypical residual networks for anomaly detection and localization, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16281\u201316291.","DOI":"10.1109\/CVPR52729.2023.01562"},{"key":"10.1016\/j.aei.2024.102823_b23","series-title":"International Conference on Neural Information Processing","first-page":"298","article-title":"Adtr: Anomaly detection transformer with feature reconstruction","author":"You","year":"2022"},{"key":"10.1016\/j.aei.2024.102823_b24","doi-asserted-by":"crossref","unstructured":"K. Roth, L. Pemula, J. Zepeda, B. Sch\u00f6lkopf, T. Brox, P. Gehler, Towards total recall in industrial anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14318\u201314328.","DOI":"10.1109\/CVPR52688.2022.01392"},{"key":"10.1016\/j.aei.2024.102823_b25","series-title":"ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"1","article-title":"Fapm: Fast adaptive patch memory for real-time industrial anomaly detection","author":"Kim","year":"2023"},{"key":"10.1016\/j.aei.2024.102823_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.inffus.2024.102301","article-title":"Explainable artificial intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions","volume":"106","author":"Longo","year":"2024","journal-title":"Inf. Fusion"},{"issue":"44","key":"10.1016\/j.aei.2024.102823_b27","doi-asserted-by":"crossref","first-page":"22071","DOI":"10.1073\/pnas.1900654116","article-title":"Definitions, methods, and applications in interpretable machine learning","volume":"116","author":"Murdoch","year":"2019","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"1","key":"10.1016\/j.aei.2024.102823_b28","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1007\/s12559-023-10179-8","article-title":"Interpreting black-box models: a review on explainable artificial intelligence","volume":"16","author":"Hassija","year":"2024","journal-title":"Cogn. Comput."},{"key":"10.1016\/j.aei.2024.102823_b29","doi-asserted-by":"crossref","first-page":"644","DOI":"10.1016\/j.isatra.2022.02.027","article-title":"Model-driven deep unrolling: Towards interpretable deep learning against noise attacks for intelligent fault diagnosis","volume":"129","author":"Zhao","year":"2022","journal-title":"ISA Trans.","ISSN":"https:\/\/id.crossref.org\/issn\/0019-0578","issn-type":"print"},{"issue":"5","key":"10.1016\/j.aei.2024.102823_b30","doi-asserted-by":"crossref","first-page":"6194","DOI":"10.1109\/TNNLS.2023.3313728","article-title":"SCCAM: Supervised contrastive convolutional attention mechanism for ante-hoc interpretable fault diagnosis with limited fault samples","volume":"35","author":"Li","year":"2024","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.aei.2024.102823_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115736","article-title":"Explaining anomalies detected by autoencoders using Shapley additive explanations","volume":"186","author":"Antwarg","year":"2021","journal-title":"Expert Syst. Appl.","ISSN":"https:\/\/id.crossref.org\/issn\/0957-4174","issn-type":"print"},{"issue":"6","key":"10.1016\/j.aei.2024.102823_b32","doi-asserted-by":"crossref","first-page":"3172","DOI":"10.1109\/JSEN.2019.2958787","article-title":"Interpretable convolutional neural network through layer-wise relevance propagation for machine fault diagnosis","volume":"20","author":"Grezmak","year":"2020","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.aei.2024.102823_b33","series-title":"2019 IEEE International Conference on Prognostics and Health Management","first-page":"1","article-title":"Visual explanation of neural network based rotation machinery anomaly detection system","author":"Saeki","year":"2019"},{"key":"10.1016\/j.aei.2024.102823_b34","series-title":"2011 IEEE International Conference on Robotics and Automation","first-page":"1","article-title":"3D is here: Point cloud library (pcl)","author":"Rusu","year":"2011"},{"key":"10.1016\/j.aei.2024.102823_b35","series-title":"2009 IEEE International Conference on Robotics and Automation","first-page":"3212","article-title":"Fast point feature histograms (FPFH) for 3D registration","author":"Rusu","year":"2009"},{"key":"10.1016\/j.aei.2024.102823_b36","article-title":"Support vector method for novelty detection","volume":"12","author":"Sch\u00f6lkopf","year":"1999","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2016","series-title":"Gaussian error linear units (gelus)","author":"Hendrycks","key":"10.1016\/j.aei.2024.102823_b37"}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034624004713?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034624004713?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,6]],"date-time":"2024-12-06T05:56:34Z","timestamp":1733464594000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1474034624004713"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":37,"alternative-id":["S1474034624004713"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2024.102823","relation":{},"ISSN":["1474-0346"],"issn-type":[{"type":"print","value":"1474-0346"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"DAUP: Enhancing point cloud homogeneity for 3D industrial anomaly detection via density-aware point cloud upsampling","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2024.102823","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102823"}}