{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,5]],"date-time":"2024-12-05T05:20:08Z","timestamp":1733376008308,"version":"3.30.1"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2022YFB3305603"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52075060","51705050","51875065","51705049"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2023CDJXY-021"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.aei.2024.102756","type":"journal-article","created":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T07:29:21Z","timestamp":1723102161000},"page":"102756","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PB","title":["A blockchain-empowered secure federated domain generalization framework for machinery fault diagnosis"],"prefix":"10.1016","volume":"62","author":[{"given":"Shucheng","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Pei","family":"Jiang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8145-851X","authenticated-orcid":false,"given":"Xiaobin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Xi Vincent","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aei.2024.102756_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2024.102471","article-title":"Information-guided signal multi-granularity contrastive feature learning for fault diagnosis with few labeled data","volume":"61","author":"Lin","year":"2024","journal-title":"Adv. Eng. Inform."},{"issue":"8","key":"10.1016\/j.aei.2024.102756_b2","doi-asserted-by":"crossref","first-page":"6785","DOI":"10.1109\/TIE.2019.2935987","article-title":"Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places","volume":"67","author":"Li","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"7","key":"10.1016\/j.aei.2024.102756_b3","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1007\/s42417-022-00498-9","article-title":"A review of data-driven machinery fault diagnosis using machine learning algorithms","volume":"10","author":"Cen","year":"2022","journal-title":"J. Vib. Eng. Technol."},{"issue":"7","key":"10.1016\/j.aei.2024.102756_b4","doi-asserted-by":"crossref","first-page":"5990","DOI":"10.1109\/TIE.2017.2774777","article-title":"A new convolutional neural network-based data-driven fault diagnosis method","volume":"65","author":"Wen","year":"2017","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.aei.2024.102756_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115000","article-title":"Data-driven early fault diagnostic methodology of permanent magnet synchronous motor","volume":"177","author":"Cai","year":"2021","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.aei.2024.102756_b6","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1109\/TII.2023.3262854","article-title":"Intelligent machinery fault diagnosis with event-based camera","volume":"20","author":"Li","year":"2024","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"3","key":"10.1016\/j.aei.2024.102756_b7","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1109\/JAS.2023.124107","article-title":"Dynamic vision enabled contactless cross-domain machine fault diagnosis with neuromorphic computing","volume":"11","author":"Chen","year":"2024","journal-title":"IEEE-CAA J. Autom. Sin."},{"key":"10.1016\/j.aei.2024.102756_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106679","article-title":"Federated learning for machinery fault diagnosis with dynamic validation and self-supervision","volume":"213","author":"Zhang","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"4","key":"10.1016\/j.aei.2024.102756_b9","doi-asserted-by":"crossref","first-page":"4108","DOI":"10.1109\/TIE.2023.3273272","article-title":"FedCAE: A new federated learning framework for edge-cloud collaboration based machine fault diagnosis","volume":"71","author":"Yu","year":"2024","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.aei.2024.102756_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108885","article-title":"Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis","volume":"229","author":"Zhang","year":"2023","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.aei.2024.102756_b11","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.jmsy.2023.07.009","article-title":"Energy consumption prediction and optimization of industrial robots based on LSTM","volume":"70","author":"Jiang","year":"2023","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.aei.2024.102756_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2024.102432","article-title":"Federated temporal-context contrastive learning for fault diagnosis using multiple datasets with insufficient labels","volume":"60","author":"Zheng","year":"2024","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2024.102756_b13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3127641","article-title":"Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis","volume":"70","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.aei.2024.102756_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2024.102400","article-title":"Single-domain incremental generation network for machinery intelligent fault diagnosis under unknown working speeds","volume":"60","author":"Pu","year":"2024","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2024.102756_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2024.109964","article-title":"Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study","volume":"245","author":"Zhao","year":"2024","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.aei.2024.102756_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109474","article-title":"Fourier-based augmentation with applications to domain generalization","volume":"139","author":"Xu","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.aei.2024.102756_b17","doi-asserted-by":"crossref","unstructured":"K. Zhou, Y. Yang, T. Hospedales, T. Xiang, Deep domain-adversarial image generation for domain generalisation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 13025\u201313032.","DOI":"10.1609\/aaai.v34i07.7003"},{"key":"10.1016\/j.aei.2024.102756_b18","first-page":"24226","article-title":"Domain generalization by learning and removing domain-specific features","volume":"35","author":"Ding","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.aei.2024.102756_b19","doi-asserted-by":"crossref","first-page":"3636","DOI":"10.1109\/TMM.2021.3104379","article-title":"Style normalization and restitution for domain generalization and adaptation","volume":"24","author":"Jin","year":"2021","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.aei.2024.102756_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.107043","article-title":"A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning","volume":"146","author":"Yu","year":"2021","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.aei.2024.102756_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2023.109188","article-title":"Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions","volume":"235","author":"Shi","year":"2023","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.aei.2024.102756_b22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3154000","article-title":"Conditional contrastive domain generalization for fault diagnosis","volume":"71","author":"Ragab","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.aei.2024.102756_b23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3216413","article-title":"Generalization on unseen domains via model-agnostic learning for intelligent fault diagnosis","volume":"71","author":"Wang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.aei.2024.102756_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2024.102622","article-title":"A novel causal feature learning-based domain generalization framework for bearing fault diagnosis with a mixture of data from multiple working conditions and machines","volume":"62","author":"Cheng","year":"2024","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2024.102756_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106775","article-title":"A survey on federated learning","volume":"216","author":"Zhang","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.aei.2024.102756_b26","series-title":"Proceedings of the 20th International Conference on Artificial Intelligence and Statistics","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","year":"2017"},{"issue":"6","key":"10.1016\/j.aei.2024.102756_b27","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1109\/MIS.2021.3082561","article-title":"SecureBoost: A lossless federated learning framework","volume":"36","author":"Cheng","year":"2021","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.aei.2024.102756_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2021.103738","article-title":"Federated transfer learning enabled smart work packaging for preserving personal image information of construction worker","volume":"128","author":"Li","year":"2021","journal-title":"Autom. Constr."},{"key":"10.1016\/j.aei.2024.102756_b29","first-page":"1","article-title":"Federated transfer learning for bearing fault diagnosis with discrepancy-based weighted federated averaging","volume":"71","author":"Chen","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.aei.2024.102756_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110413","article-title":"A federated transfer learning method with low-quality knowledge filtering and dynamic model aggregation for rolling bearing fault diagnosis","volume":"198","author":"Wang","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.aei.2024.102756_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.rser.2020.110112","article-title":"Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey","volume":"132","author":"Leng","year":"2020","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"1","key":"10.1016\/j.aei.2024.102756_b32","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1109\/MNET.011.2000263","article-title":"A blockchain-based decentralized federated learning framework with committee consensus","volume":"35","author":"Li","year":"2021","journal-title":"IEEE Netw."},{"key":"10.1016\/j.aei.2024.102756_b33","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/j.future.2020.12.003","article-title":"Privacy-preserving blockchain-based federated learning for traffic flow prediction","volume":"117","author":"Qi","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"issue":"4","key":"10.1016\/j.aei.2024.102756_b34","doi-asserted-by":"crossref","first-page":"3276","DOI":"10.1109\/JIOT.2022.3144450","article-title":"Toward trustworthy AI: Blockchain-based architecture design for accountability and fairness of federated learning systems","volume":"10","author":"Lo","year":"2023","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.aei.2024.102756_b35","series-title":"Proceedings of the 36th International Conference on Machine Learning","first-page":"4615","article-title":"Agnostic federated learning","author":"Mohri","year":"2019"},{"key":"10.1016\/j.aei.2024.102756_b36","first-page":"38831","article-title":"FedSR: A simple and effective domain generalization method for federated learning","volume":"35","author":"Nguyen","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.aei.2024.102756_b37","article-title":"Domain generalization via conditional invariant representations","volume":"32","author":"Li","year":"2018","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"10.1016\/j.aei.2024.102756_b38","series-title":"Deep domain generalization via conditional invariant adversarial networks","first-page":"624","author":"Li","year":"2018"},{"key":"10.1016\/j.aei.2024.102756_b39","doi-asserted-by":"crossref","unstructured":"R. Zhang, Q. Xu, J. Yao, Y. Zhang, Q. Tian, Y. Wang, Federated domain generalization with generalization adjustment, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3954\u20133963.","DOI":"10.1109\/CVPR52729.2023.00385"},{"year":"2021","series-title":"Federated learning with domain generalization","author":"Zhang","key":"10.1016\/j.aei.2024.102756_b40"}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S147403462400404X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S147403462400404X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,4]],"date-time":"2024-12-04T09:44:49Z","timestamp":1733305489000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S147403462400404X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":40,"alternative-id":["S147403462400404X"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2024.102756","relation":{},"ISSN":["1474-0346"],"issn-type":[{"type":"print","value":"1474-0346"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A blockchain-empowered secure federated domain generalization framework for machinery fault diagnosis","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2024.102756","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102756"}}