{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,12]],"date-time":"2024-11-12T18:40:03Z","timestamp":1731436803447,"version":"3.28.0"},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.aei.2024.102425","type":"journal-article","created":{"date-parts":[[2024,2,23]],"date-time":"2024-02-23T19:16:16Z","timestamp":1708715776000},"page":"102425","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Like draws to like: A Multi-granularity Ball-Intra Fusion approach for fault diagnosis models to resists misleading by noisy labels"],"prefix":"10.1016","volume":"60","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0017-9808","authenticated-orcid":false,"given":"Fir","family":"Dunkin","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1529-4537","authenticated-orcid":false,"given":"Xinde","family":"Li","sequence":"additional","affiliation":[]},{"given":"Chuanfei","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Guoliang","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Heqing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xiaoyan","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Zhentong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aei.2024.102425_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.102246","article-title":"Empowering intelligent manufacturing with edge computing: A portable diagnosis and distance localization approach for bearing faults","volume":"59","author":"Fang","year":"2024","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2024.102425_b2","article-title":"Multi-source information fusion: Progress and future","volume":"Available online","author":"Li","year":"2024","journal-title":"Chin. J. Aeronaut."},{"issue":"7","key":"10.1016\/j.aei.2024.102425_b3","doi-asserted-by":"crossref","first-page":"2277","DOI":"10.1109\/TFUZZ.2022.3222941","article-title":"Partial multilabel learning using fuzzy neighborhood-based ball clustering and kernel extreme learning machine","volume":"31","author":"Sun","year":"2023","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.aei.2024.102425_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.102121","article-title":"Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review","volume":"57","author":"Zhang","year":"2023","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2024.102425_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.111175","article-title":"Language model as an annotator: Unsupervised context-aware quality phrase generation","volume":"283","author":"Zhang","year":"2024","journal-title":"Knowl.-Based Syst."},{"year":"2023","series-title":"Segment anything","author":"Kirillov","key":"10.1016\/j.aei.2024.102425_b6"},{"key":"10.1016\/j.aei.2024.102425_b7","doi-asserted-by":"crossref","unstructured":"S. Lan, X. Yang, Z. Yu, Z. Wu, J.M. Alvarez, A. Anandkumar, Vision transformers are good mask auto-labelers, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23745\u201323755.","DOI":"10.1109\/CVPR52729.2023.02274"},{"key":"10.1016\/j.aei.2024.102425_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109972","article-title":"Robust online hashing with label semantic enhancement for cross-modal retrieval","volume":"145","author":"Li","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.aei.2024.102425_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.121799","article-title":"Novel extended NI-MWMOTE-based fault diagnosis method for data-limited and noise-imbalanced scenarios","volume":"238","author":"Wei","year":"2024","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.aei.2024.102425_b10","first-page":"1","article-title":"Learning from noisy labels with deep neural networks: A survey","author":"Song","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.aei.2024.102425_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3216413","article-title":"Iterative error self-correction for robust fault diagnosis of mechanical equipment with noisy label","volume":"71","author":"Wang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"6","key":"10.1016\/j.aei.2024.102425_b12","doi-asserted-by":"crossref","first-page":"7724","DOI":"10.1109\/TII.2022.3229130","article-title":"Intelligent fault diagnosis with noisy labels via semisupervised learning on industrial time series","volume":"19","author":"Cheng","year":"2023","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.aei.2024.102425_b13","doi-asserted-by":"crossref","unstructured":"X. Xia, J. Deng, W. Bao, Y. Du, B. Han, S. Shan, T. Liu, Holistic Label Correction for Noisy Multi-Label Classification, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 1483\u20131493.","DOI":"10.1109\/ICCV51070.2023.00143"},{"key":"10.1016\/j.aei.2024.102425_b14","doi-asserted-by":"crossref","unstructured":"N. Karim, M.N. Rizve, N. Rahnavard, A. Mian, M. Shah, Unicon: Combating label noise through uniform selection and contrastive learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9676\u20139686.","DOI":"10.1109\/CVPR52688.2022.00945"},{"key":"10.1016\/j.aei.2024.102425_b15","doi-asserted-by":"crossref","unstructured":"Z. Huang, J. Zhang, H. Shan, Twin contrastive learning with noisy labels, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 11661\u201311670.","DOI":"10.1109\/CVPR52729.2023.01122"},{"key":"10.1016\/j.aei.2024.102425_b16","doi-asserted-by":"crossref","unstructured":"Q. Wei, L. Feng, H. Sun, R. Wang, C. Guo, Y. Yin, Fine-grained classification with noisy labels, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 11651\u201311660.","DOI":"10.1109\/CVPR52729.2023.01121"},{"key":"10.1016\/j.aei.2024.102425_b17","doi-asserted-by":"crossref","unstructured":"J. Wei, Z. Zhu, T. Luo, E. Amid, A. Kumar, Y. Liu, To aggregate or not? learning with separate noisy labels, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 2523\u20132535.","DOI":"10.1145\/3580305.3599522"},{"key":"10.1016\/j.aei.2024.102425_b18","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ins.2019.01.010","article-title":"Granular ball computing classifiers for efficient, scalable and robust learning","volume":"483","author":"Xia","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.aei.2024.102425_b19","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.ins.2022.08.066","article-title":"VPGB: A granular-ball based model for attribute reduction and classification with label noise","volume":"611","author":"Peng","year":"2022","journal-title":"Inform. Sci."},{"issue":"11","key":"10.1016\/j.aei.2024.102425_b20","first-page":"2566","article-title":"A fast approximate reasoning method in hierarchical DSmT (A)","volume":"38","author":"Li","year":"2010","journal-title":"Acta Electon. Sin."},{"issue":"3A","key":"10.1016\/j.aei.2024.102425_b21","first-page":"31","article-title":"A fast approximate reasoning method in hierarchical DSmT (B)","volume":"39","author":"Li","year":"2011","journal-title":"Acta Electon. Sin."},{"key":"10.1016\/j.aei.2024.102425_b22","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1007\/s10489-009-0170-2","article-title":"Fusion of imprecise qualitative information","volume":"33","author":"Li","year":"2010","journal-title":"Appl. Intell."},{"key":"10.1016\/j.aei.2024.102425_b23","series-title":"2007 10th International Conference on Information Fusion","first-page":"1","article-title":"Enrichment of qualitative beliefs for reasoning under uncertainty","author":"Li","year":"2007"},{"key":"10.1016\/j.aei.2024.102425_b24","doi-asserted-by":"crossref","first-page":"208643","DOI":"10.1109\/ACCESS.2020.3036075","article-title":"Multi-scale vehicle detection in high-resolution aerial images with context information","volume":"8","author":"Li","year":"2020","journal-title":"IEEE Access"},{"issue":"8","key":"10.1016\/j.aei.2024.102425_b25","doi-asserted-by":"crossref","first-page":"1298","DOI":"10.3724\/SP.J.1004.2012.01298","article-title":"An airplane image target\u2019s multifeature fusion recognition method","volume":"38","author":"Li","year":"2012","journal-title":"Acta Automat. Sinica"},{"key":"10.1016\/j.aei.2024.102425_b26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNNLS.2023.3335859","article-title":"Transfer learning-motivated intelligent fault diagnosis designs: A survey, insights, and perspectives","author":"Chen","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.aei.2024.102425_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TMECH.2024.3398633","article-title":"Fault diagnosis of multichannel bearing-rotor system via multistructure collaborative discriminative embedding","author":"Yuan","year":"2024","journal-title":"IEEE\/ASME Trans. Mechatronics"},{"key":"10.1016\/j.aei.2024.102425_b28","article-title":"Nonlinear predictable feature learning with explanatory reasoning for complicated industrial system fault diagnosis","author":"Zhang","year":"2024","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.aei.2024.102425_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2024.111115","article-title":"High imbalance fault diagnosis of aviation hydraulic pump based on data augmentation via local wavelet similarity fusion","volume":"209","author":"Fu","year":"2024","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.aei.2024.102425_b30","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/978-1-4471-6410-4_10","article-title":"Data-driven design of observer-based fault diagnosis systems","author":"Ding","year":"2014","journal-title":"Data-Driven Des. Fault Diagn. Fault-Toler. Control Syst."},{"key":"10.1016\/j.aei.2024.102425_b31","article-title":"Adversarial FDI attack monitoring: Toward secure defense of industrial electronics","author":"Ma","year":"2023","journal-title":"IEEE Ind. Electron. Mag."},{"key":"10.1016\/j.aei.2024.102425_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110952","article-title":"TFN: An interpretable neural network with time-frequency transform embedded for intelligent fault diagnosis","volume":"207","author":"Chen","year":"2024","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.aei.2024.102425_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.121338","article-title":"LiConvFormer: A lightweight fault diagnosis framework using separable multiscale convolution and broadcast self-attention","volume":"237","author":"Yan","year":"2024","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.aei.2024.102425_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.122806","article-title":"Causal explaining guided domain generalization for rotating machinery intelligent fault diagnosis","volume":"243","author":"Guo","year":"2024","journal-title":"Expert Syst. Appl."},{"issue":"12","key":"10.1016\/j.aei.2024.102425_b35","doi-asserted-by":"crossref","first-page":"12773","DOI":"10.1109\/TIE.2023.3234142","article-title":"Cross-machine transfer fault diagnosis by ensemble weighting subdomain adaptation network","volume":"70","author":"Qian","year":"2023","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.aei.2024.102425_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110748","article-title":"Maximum mean square discrepancy: a new discrepancy representation metric for mechanical fault transfer diagnosis","volume":"276","author":"Qian","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.aei.2024.102425_b37","doi-asserted-by":"crossref","DOI":"10.1109\/TII.2022.3232842","article-title":"Relationship transfer domain generalization network for rotating machinery fault diagnosis under different working conditions","author":"Qian","year":"2023","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.aei.2024.102425_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109884","article-title":"Deep discriminative transfer learning network for cross-machine fault diagnosis","volume":"186","author":"Qian","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"year":"2021","series-title":"Robust long-tailed learning under label noise","author":"Wei","key":"10.1016\/j.aei.2024.102425_b39"},{"key":"10.1016\/j.aei.2024.102425_b40","doi-asserted-by":"crossref","unstructured":"D. Cheng, T. Liu, Y. Ning, N. Wang, B. Han, G. Niu, X. Gao, M. Sugiyama, Instance-dependent label-noise learning with manifold-regularized transition matrix estimation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16630\u201316639.","DOI":"10.1109\/CVPR52688.2022.01613"},{"key":"10.1016\/j.aei.2024.102425_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109013","article-title":"Longremix: Robust learning with high confidence samples in a noisy label environment","volume":"133","author":"Cordeiro","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.aei.2024.102425_b42","doi-asserted-by":"crossref","unstructured":"M. Chen, H. Cheng, Y. Du, M. Xu, W. Jiang, C. Wang, Two wrongs don\u2019t make a right: Combating confirmation bias in learning with label noise, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, No. 12, 2023, pp. 14765\u201314773.","DOI":"10.1609\/aaai.v37i12.26725"},{"key":"10.1016\/j.aei.2024.102425_b43","article-title":"Using trusted data to train deep networks on labels corrupted by severe noise","volume":"31","author":"Hendrycks","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.aei.2024.102425_b44","series-title":"International Conference on Machine Learning","first-page":"3355","article-title":"Dimensionality-driven learning with noisy labels","author":"Ma","year":"2018"},{"key":"10.1016\/j.aei.2024.102425_b45","doi-asserted-by":"crossref","unstructured":"D. Tanaka, D. Ikami, T. Yamasaki, K. Aizawa, Joint optimization framework for learning with noisy labels, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5552\u20135560.","DOI":"10.1109\/CVPR.2018.00582"},{"key":"10.1016\/j.aei.2024.102425_b46","doi-asserted-by":"crossref","unstructured":"H. Wei, L. Feng, X. Chen, B. An, Combating noisy labels by agreement: A joint training method with co-regularization, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13726\u201313735.","DOI":"10.1109\/CVPR42600.2020.01374"},{"key":"10.1016\/j.aei.2024.102425_b47","doi-asserted-by":"crossref","unstructured":"S. Li, X. Xia, S. Ge, T. Liu, Selective-supervised contrastive learning with noisy labels, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 316\u2013325.","DOI":"10.1109\/CVPR52688.2022.00041"},{"issue":"1","key":"10.1016\/j.aei.2024.102425_b48","doi-asserted-by":"crossref","first-page":"13036","DOI":"10.1038\/s41598-019-49539-6","article-title":"Efficient partition of integer optimization problems with one-hot encoding","volume":"9","author":"Okada","year":"2019","journal-title":"Sci. Rep."},{"key":"10.1016\/j.aei.2024.102425_b49","first-page":"1","article-title":"Graph-structure-based multigranular belief fusion for human activity recognition","author":"Dong","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.aei.2024.102425_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.101890","article-title":"You can get smaller: A lightweight self-activation convolution unit modified by transformer for fault diagnosis","volume":"55","author":"Fang","year":"2023","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2024.102425_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110253","article-title":"MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion","volume":"193","author":"Deng","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"year":"2019","series-title":"Large batch optimization for deep learning: Training bert in 76 minutes","author":"You","key":"10.1016\/j.aei.2024.102425_b52"},{"year":"2016","series-title":"Sgdr: Stochastic gradient descent with warm restarts","author":"Loshchilov","key":"10.1016\/j.aei.2024.102425_b53"},{"year":"2023","series-title":"Softmatch: Addressing the quantity-quality trade-off in semi-supervised learning","author":"Chen","key":"10.1016\/j.aei.2024.102425_b54"}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034624000739?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034624000739?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,12]],"date-time":"2024-11-12T17:58:42Z","timestamp":1731434322000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1474034624000739"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":54,"alternative-id":["S1474034624000739"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2024.102425","relation":{},"ISSN":["1474-0346"],"issn-type":[{"type":"print","value":"1474-0346"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Like draws to like: A Multi-granularity Ball-Intra Fusion approach for fault diagnosis models to resists misleading by noisy labels","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2024.102425","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102425"}}