{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T19:12:52Z","timestamp":1724958772386},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100020725","name":"Hubei Key Laboratory of Intelligent Geo-Information Processing","doi-asserted-by":"publisher","award":["KLIGIP-2022-B01"],"id":[{"id":"10.13039\/100020725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51825502","51905198","52175490"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2019M652630","2020T130225"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100018594","name":"Central University Basic Research Fund of China","doi-asserted-by":"publisher","award":["CUG2106213"],"id":[{"id":"10.13039\/501100018594","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.aei.2023.101984","type":"journal-article","created":{"date-parts":[[2023,5,8]],"date-time":"2023-05-08T22:55:06Z","timestamp":1683586506000},"page":"101984","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Solving multi-task manufacturing cloud service allocation problems via bee colony optimizer with transfer learning"],"prefix":"10.1016","volume":"56","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1135-4536","authenticated-orcid":false,"given":"Jiajun","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Liang","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Lu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aei.2023.101984_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2021.101481","article-title":"Implementation path and reference framework for industrial internet platform (IIP) in product service system using industrial practice investigation method","volume":"51","author":"Zhang","year":"2022","journal-title":"Adv. Eng. Inf."},{"key":"10.1016\/j.aei.2023.101984_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2021.101370","article-title":"An IIoT-driven and AI-enabled framework for smart manufacturing system based on three-terminal collaborative platform","volume":"50","author":"Bu","year":"2021","journal-title":"Adv. Eng. Inf."},{"key":"10.1016\/j.aei.2023.101984_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2021.101439","article-title":"Mass personalization strategy under industrial Internet of Things: A case study on furniture production","volume":"50","author":"Ding","year":"2021","journal-title":"Adv. Eng. Inf."},{"issue":"1","key":"10.1016\/j.aei.2023.101984_b4","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TASE.2020.3029081","article-title":"Double auction-based manufacturing cloud service allocation in an industrial park","volume":"19","author":"Kang","year":"2022","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.aei.2023.101984_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2020.102050","article-title":"Cloud manufacturing ecosystem analysis and design","volume":"67","author":"Helo","year":"2021","journal-title":"Rob. Comput. Integr. Manuf."},{"key":"10.1016\/j.aei.2023.101984_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102217","article-title":"Service-oriented industrial Internet of Things gateway for cloud manufacturing","volume":"73","author":"Liu","year":"2022","journal-title":"Rob. Comput. Integr. Manuf."},{"key":"10.1016\/j.aei.2023.101984_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101620","article-title":"An innovative approach for resource sharing and scheduling in a sustainable distributed manufacturing system","volume":"52","author":"Ramakurthi","year":"2022","journal-title":"Adv. Eng. Inf."},{"key":"10.1016\/j.aei.2023.101984_b8","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1016\/j.jmsy.2021.07.012","article-title":"A utility-based matching mechanism for stable and optimal resource allocation in cloud manufacturing platforms using deferred acceptance algorithm","volume":"60","author":"Delaram","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.aei.2023.101984_b9","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.asoc.2017.03.017","article-title":"Multi-population parallel self-adaptive differential artificial bee colony algorithm with application in large-scale service composition for cloud manufacturing","volume":"56","author":"Zhou","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.aei.2023.101984_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108006","article-title":"A three-tier programming model for service composition and optimal selection in cloud manufacturing","volume":"167","author":"Lim","year":"2022","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.aei.2023.101984_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.07.021","article-title":"QoS-aware cloud service composition: A systematic mapping study from the perspective of computational intelligence","volume":"138","author":"She","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.aei.2023.101984_b12","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.jmsy.2021.05.012","article-title":"Multitask-oriented manufacturing service composition in an uncertain environment using a hyper-heuristic algorithm","volume":"60","author":"Zhang","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.aei.2023.101984_b13","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.jmsy.2016.09.008","article-title":"A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly","volume":"41","author":"Jiang","year":"2016","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.aei.2023.101984_b14","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.jmsy.2022.08.003","article-title":"Transfer learning assisted batch optimization of jobs arriving dynamically in manufacturing cloud","volume":"65","author":"Zhou","year":"2022","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.aei.2023.101984_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2022.102472","article-title":"Towards multi-task transfer optimization of cloud service collaboration in industrial internet platform","volume":"80","author":"Zhou","year":"2023","journal-title":"Rob. Comput. Integr. Manuf."},{"issue":"1","key":"10.1016\/j.aei.2023.101984_b16","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/MCI.2020.3039066","article-title":"Evolutionary transfer optimization - a new frontier in evolutionary computation research","volume":"16","author":"Tan","year":"2021","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.aei.2023.101984_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.120110","article-title":"Solving many-task optimization problems via online intertask learning","volume":"225","author":"Zhou","year":"2023","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.aei.2023.101984_b18","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1109\/TEVC.2019.2906927","article-title":"Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II","volume":"24","author":"Bali","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.aei.2023.101984_b19","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1007\/s12559-020-09777-7","article-title":"Non-linear domain adaptation in transfer evolutionary optimization","volume":"13","author":"Lim","year":"2021","journal-title":"Cogn. Comput."},{"issue":"3","key":"10.1016\/j.aei.2023.101984_b20","first-page":"424","article-title":"Multi-source selective transfer framework in multi-objective optimization problems","volume":"24","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.aei.2023.101984_b21","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1109\/TEVC.2021.3107435","article-title":"Evolutionary multitask optimization with adaptive knowledge transfer","volume":"26","author":"Xu","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.aei.2023.101984_b22","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s10462-012-9328-0","article-title":"A comprehensive survey: Artificial bee colony (ABC) algorithm and applications","volume":"42","author":"Karaboga","year":"2014","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.aei.2023.101984_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101528","article-title":"Research on the collaboration of service selection and resource scheduling for IoT simulation workflows","volume":"52","author":"Li","year":"2022","journal-title":"Adv. Eng. Inf."},{"issue":"2","key":"10.1016\/j.aei.2023.101984_b24","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1080\/00207543.2019.1697000","article-title":"Dynamic service resources scheduling method in cloud manufacturing environment","volume":"59","author":"Yuan","year":"2021","journal-title":"Int. J. Prod. Res."},{"issue":"9","key":"10.1016\/j.aei.2023.101984_b25","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1080\/0951192X.2021.1946852","article-title":"A novel hybrid algorithm for large-scale composition optimization problems in cloud manufacturing","volume":"34","author":"Wang","year":"2021","journal-title":"Int. J. Computer Integr. Manuf."},{"key":"10.1016\/j.aei.2023.101984_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107237","article-title":"Manufacturing service supply-demand optimization with dual diversities for industrial internet platforms","volume":"156","author":"Hao","year":"2021","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.aei.2023.101984_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102143","article-title":"An effective dynamic service composition reconfiguration approach when service exceptions occur in real-life cloud manufacturing","volume":"71","author":"Wang","year":"2021","journal-title":"Rob. Comput. Integr. Manuf."},{"key":"10.1016\/j.aei.2023.101984_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.106003","article-title":"An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing","volume":"87","author":"Yang","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.aei.2023.101984_b29","article-title":"An efficient two-phase approach for reliable collaboration-aware service composition in cloud manufacturing","volume":"23","author":"Xie","year":"2021","journal-title":"J. Ind. Inf. Integr."},{"key":"10.1016\/j.aei.2023.101984_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101776","article-title":"Real-time scheduling for distributed permutation flowshops with dynamic job arrivals using deep reinforcement learning","volume":"54","author":"Yang","year":"2022","journal-title":"Adv. Eng. Inf."},{"issue":"8","key":"10.1016\/j.aei.2023.101984_b31","doi-asserted-by":"crossref","first-page":"2425","DOI":"10.1080\/00207543.2021.1893851","article-title":"Multi-user-oriented manufacturing service scheduling with an improved NSGA-II approach in the cloud manufacturing system","volume":"60","author":"Wang","year":"2022","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.aei.2023.101984_b32","series-title":"2017 IEEE Con. Evol. Comput.","first-page":"2266","article-title":"Evolutionary many-tasking based on biocoenosis through symbiosis: A framework and benchmark problems","author":"Liaw","year":"2017"},{"issue":"1","key":"10.1016\/j.aei.2023.101984_b33","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TEVC.2019.2904696","article-title":"Self-regulated evolutionary multi-task optimization","volume":"24","author":"Zheng","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.aei.2023.101984_b34","series-title":"2019 IEEE Con. Evol. Comput.","first-page":"2153","article-title":"A preliminary study of adaptive task selection in explicit evolutionary many-tasking","author":"Shang","year":"2019"},{"issue":"2","key":"10.1016\/j.aei.2023.101984_b35","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1109\/TEVC.2021.3101697","article-title":"Evolutionary many-task optimization based on multi-source knowledge transfer","volume":"26","author":"Liang","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.aei.2023.101984_b36","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1109\/TETCI.2019.2916051","article-title":"An adaptive archive-based evolutionary framework for many-task optimization","volume":"4","author":"Chen","year":"2020","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"issue":"8","key":"10.1016\/j.aei.2023.101984_b37","doi-asserted-by":"crossref","first-page":"1773","DOI":"10.1007\/s10845-016-1215-0","article-title":"A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition","volume":"29","author":"Seghir","year":"2018","journal-title":"J. Intell. Manuf."},{"issue":"4","key":"10.1016\/j.aei.2023.101984_b38","doi-asserted-by":"crossref","first-page":"710","DOI":"10.1109\/TEVC.2021.3060899","article-title":"Ensemble of dynamic resource allocation strategies for decomposition-based multi-objective optimization","volume":"25","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.aei.2023.101984_b39","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/s00500-008-0323-y","article-title":"KEEL: A software tool to assess evolutionary algorithms for data mining problems","volume":"13","author":"Alcala-Fdez","year":"2009","journal-title":"Soft. Comput."},{"issue":"9","key":"10.1016\/j.aei.2023.101984_b40","doi-asserted-by":"crossref","first-page":"3457","DOI":"10.1109\/TCYB.2018.2845361","article-title":"Evolutionary multitasking via explicit autoencoding","volume":"49","author":"Feng","year":"2019","journal-title":"IEEE Trans. Cybern."}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S147403462300112X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S147403462300112X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T08:43:19Z","timestamp":1701420199000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S147403462300112X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":40,"alternative-id":["S147403462300112X"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2023.101984","relation":{},"ISSN":["1474-0346"],"issn-type":[{"value":"1474-0346","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Solving multi-task manufacturing cloud service allocation problems via bee colony optimizer with transfer learning","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2023.101984","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101984"}}