{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,12]],"date-time":"2025-04-12T09:27:33Z","timestamp":1744450053688,"version":"3.37.3"},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.aei.2020.101195","type":"journal-article","created":{"date-parts":[[2020,11,10]],"date-time":"2020-11-10T17:45:08Z","timestamp":1605030308000},"page":"101195","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":61,"special_numbering":"C","title":["A building regulation question answering system: A deep learning methodology"],"prefix":"10.1016","volume":"46","author":[{"given":"Botao","family":"Zhong","sequence":"first","affiliation":[]},{"given":"Wanlei","family":"He","sequence":"additional","affiliation":[]},{"given":"Ziwei","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Peter E.D.","family":"Love","sequence":"additional","affiliation":[]},{"given":"Junqing","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Hanbin","family":"Luo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.aei.2020.101195_b0005","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.giq.2008.12.008","article-title":"Improving access to and understanding of regulations through taxonomies","volume":"26","author":"Cheng","year":"2009","journal-title":"Gov. Inform. Q."},{"year":"2002","series-title":"Developing a Basic Social Science Research Program for Digital Government: Information, Organizations and Governance. report of a national workshop, John Fitzgerald Kennedy School of Government","author":"Fountain","key":"10.1016\/j.aei.2020.101195_b0010"},{"issue":"12","key":"10.1016\/j.aei.2020.101195_b0015","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.autcon.2012.06.006","article-title":"Ontology-based semantic modeling of regulation constraint for automated construction quality compliance checking","volume":"28","author":"Zhong","year":"2012","journal-title":"Automat. Constr."},{"issue":"5","key":"10.1016\/j.aei.2020.101195_b0020","doi-asserted-by":"crossref","first-page":"565","DOI":"10.14778\/3055540.3055549","article-title":"KBQA: learning question answering over QA corpora and knowledge bases","volume":"10","author":"Cui","year":"2017","journal-title":"Proc. VLDB. Endow."},{"key":"10.1016\/j.aei.2020.101195_b0025","series-title":"Proceedings of the 10th international conference on Artificial intelligence and law","first-page":"146","article-title":"Legal information retrieval and application to e-rulemaking","author":"Lau","year":"2005"},{"key":"10.1016\/j.aei.2020.101195_b0030","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.autcon.2017.06.018","article-title":"Computer representation of building codes for automated compliance checking","volume":"82","author":"\u0130lal","year":"2017","journal-title":"Automat. Constr."},{"issue":"3","key":"10.1016\/j.aei.2020.101195_b0035","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0954-1810(96)00043-X","article-title":"Conceptual modelling of building regulation knowledge","volume":"11","author":"de Gelder","year":"1997","journal-title":"Artif. Intell. Eng."},{"issue":"8","key":"10.1016\/j.aei.2020.101195_b0040","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1016\/j.autcon.2009.07.002","article-title":"Automatic rule-based checking of building designs","volume":"18","author":"Eastman","year":"2009","journal-title":"Automat. Constr."},{"key":"10.1016\/j.aei.2020.101195_b0045","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1007\/978-3-642-23580-1_19","article-title":"An ontological approach for modeling technical standards for compliance checking","author":"Bouzidi","year":"2011","journal-title":"International Conference on Web Reasoning and Rule Systems, Springer"},{"key":"10.1016\/j.aei.2020.101195_b0050","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.autcon.2016.10.003","article-title":"Semantic web technologies in AEC industry: A literature overview","volume":"73","author":"Pauwels","year":"2017","journal-title":"Automat. Constr."},{"key":"10.1016\/j.aei.2020.101195_b0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2019.101003","article-title":"Deep learning-based extraction of construction procedural constraints from construction regulations","volume":"43","author":"Zhong","year":"2020","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2020.101195_b0060","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1007\/s10506-008-9065-5","article-title":"Regulation retrieval using industry specific taxonomies","volume":"16","author":"Cheng","year":"2008","journal-title":"Artif. Intell. Law."},{"key":"10.1016\/j.aei.2020.101195_b0065","series-title":"2009 2nd International Conference on Adaptive Science & Technology (ICAST)","first-page":"257","article-title":"Advancing regulation retrieval with profiling, controlled vocabularies and networked services","author":"Cerovsek","year":"2009"},{"key":"10.1016\/j.aei.2020.101195_b0070","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/j.aei.2011.12.003","article-title":"A concept-based information retrieval approach for engineering domain-specific technical documents","volume":"26","author":"Lin","year":"2012","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2020.101195_b0075","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.autcon.2018.12.016","article-title":"Construction site accident analysis using text mining and natural language processing techniques","volume":"99","author":"Zhang","year":"2019","journal-title":"Automat. Constr."},{"issue":"8","key":"10.1016\/j.aei.2020.101195_b0080","doi-asserted-by":"crossref","first-page":"3266","DOI":"10.1016\/j.eswa.2012.12.090","article-title":"Ontology-based information extraction of regulatory networks from scientific articles with case studies for Escherichia coli","volume":"40","author":"Moreno","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.aei.2020.101195_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2019.103276","article-title":"Ontology-based clinical information extraction from physician\u2019s free-text notes","volume":"98","author":"Yehia","year":"2019","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.aei.2020.101195_b0090","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1061\/9780784413029.088","article-title":"Information transformation and automated reasoning for automated compliance checking in construction","author":"Zhang","year":"2013","journal-title":"ASCE International Workshop on Computing in Civil Engineering"},{"key":"10.1016\/j.aei.2020.101195_b0095","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.autcon.2016.09.004","article-title":"Ontology-based automated information extraction from building energy conservation codes","volume":"74","author":"Zhou","year":"2017","journal-title":"Automat. Constr."},{"key":"10.1016\/j.aei.2020.101195_b0100","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.autcon.2017.02.003","article-title":"Ontology-based semi-supervised conditional random fields for automated information extraction from bridge inspection reports","volume":"81","author":"Liu","year":"2017","journal-title":"Automat. Constr."},{"key":"10.1016\/j.aei.2020.101195_b0105","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.jbi.2017.07.006","article-title":"Recurrent neural networks for classifying relations in clinical notes","volume":"72","author":"Luo","year":"2017","journal-title":"J. Biomed Inform."},{"key":"10.1016\/j.aei.2020.101195_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2020.103089","article-title":"Deep learning and network analysis: Classifying and visualizing accident narratives in construction","volume":"113","author":"Zhong","year":"2020","journal-title":"Automat. Constr."},{"key":"10.1016\/j.aei.2020.101195_b0115","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1613\/jair.1.11259","article-title":"From word to sense embeddings: A survey on vector representations of meaning","volume":"63","author":"Camacho-Collados","year":"2018","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.aei.2020.101195_b0120","unstructured":"M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations. Proceedings of NAACL-HLT(2018), pp. 2227-2237.https:\/\/doi.org\/ 10.18653\/v1\/N18-1202."},{"key":"10.1016\/j.aei.2020.101195_b0125","unstructured":"A. Akbik, T. Bergmann, R. Vollgraf, Pooled contextualized embeddings for named entity recognition. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1(2019), pp. 724-728.https:\/\/doi.org\/ 10.18653\/v1\/N19-1078."},{"issue":"2","key":"10.1016\/j.aei.2020.101195_b0130","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.jbi.2011.01.004","article-title":"AskHERMES: An online question answering system for complex clinical questions","volume":"44","author":"Cao","year":"2011","journal-title":"J. Bio. Inform"},{"key":"10.1016\/j.aei.2020.101195_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2020.101060","article-title":"Automated text classification of near-misses from safety reports: An improved deep learning approach","volume":"44","author":"Fang","year":"2020","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.aei.2020.101195_b0140","unstructured":"L. Yu, K.M. Hermann, P. Blunsom, S. Pulman. Deep learning for answer sentence selection. arXiv preprint arXiv:14121632. 2014."},{"key":"10.1016\/j.aei.2020.101195_b0145","series-title":"3rd International Conference on Learning Representations","article-title":"Neural machine translation by jointly learning to align and translate","author":"Bahdanau","year":"2015"},{"key":"10.1016\/j.aei.2020.101195_b0150","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.aei.2020.101195_b0155","series-title":"Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing","article-title":"A Decomposable Attention Model for Natural Language Inference","author":"Parikh","year":"2016"},{"key":"10.1016\/j.aei.2020.101195_b0160","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2018.05.004","article-title":"Domain attention model for multi-domain sentiment classification","volume":"155","author":"Yuan","year":"2018","journal-title":"Knowl. Based. Syst."},{"key":"10.1016\/j.aei.2020.101195_b0165","first-page":"5674","article-title":"Adaptive co-attention network for named entity recognition in tweets","author":"Zhang","year":"2018","journal-title":"Thirty-Second AAAI Conference on Artificial Intelligence"},{"key":"10.1016\/j.aei.2020.101195_b0170","article-title":"\u201cBERT, Pre-training of Deep Bidirectional Transformers for Language Understanding","author":"Devlin","year":"2019","journal-title":"\u201c NAACL-HLT."},{"key":"10.1016\/j.aei.2020.101195_b0175","doi-asserted-by":"crossref","unstructured":"M. Y. Day, Y. L. Kuo, A Study of Deep Learning for Factoid Question Answering System, 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), IEEE, 2020, pp. 419-424. https:\/\/doi.org\/10.1109\/IRI49571.2020.00070.","DOI":"10.1109\/IRI49571.2020.00070"},{"key":"10.1016\/j.aei.2020.101195_b0180","series-title":"In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM \u201920)","article-title":"Do People and Neural Nets Pay Attention to the Same Words? Studying Eye-tracking Data for Non-factoid QA Evaluation","author":"Bolotova","year":"2020"},{"key":"10.1016\/j.aei.2020.101195_b0185","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.ymeth.2019.06.024","article-title":"Deep scaled dot-product attention based domain adaptation model for biomedical question answering","volume":"173","author":"Du","year":"2020","journal-title":"Methods"},{"issue":"1","key":"10.1016\/j.aei.2020.101195_b0190","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1061\/(ASCE)0887-3801(2008)22:1(3)","article-title":"Providing answers to questions from automatically collected web pages for intelligent decision making in the construction sector","volume":"22","author":"Kovacevic","year":"2008","journal-title":"J. Comput. Civil. Eng."},{"key":"10.1016\/j.aei.2020.101195_b0195","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2016.01.001","article-title":"Evaluating the strength of text classification categories for supporting construction field inspection","volume":"64","author":"Chi","year":"2016","journal-title":"Automat. Constr."},{"key":"10.1016\/j.aei.2020.101195_b0200","unstructured":"W. B. Frakes, B. Y. Ricardo, Introduction to information storage and retrieval systems. Information retrieval: data structures and algorithms. Prentice-Hall, Inc., USA, pp. 1\u201312. https:\/\/dl.acm.org\/doi\/10.5555\/129687.129688."},{"key":"10.1016\/j.aei.2020.101195_b0205","first-page":"613","article-title":"A vector space model for information retrieval","volume":"18","author":"Salton","year":"1975","journal-title":"J. Am. Soc. Inf. Sci."},{"key":"10.1016\/j.aei.2020.101195_b0210","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pbio.0020309","article-title":"Textpresso: an ontology-based information retrieval and extraction system for biological literature","volume":"2","author":"M\u00fcller","year":"2004","journal-title":"Plos. Biol."},{"key":"10.1016\/j.aei.2020.101195_b0215","series-title":"Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval","first-page":"50","article-title":"Probabilistic latent semantic indexing","author":"Hofmann","year":"1999"},{"key":"10.1016\/j.aei.2020.101195_b0220","series-title":"Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval","first-page":"275","article-title":"A language modeling approach to information retrieval","author":"Ponte","year":"1998"},{"key":"10.1016\/j.aei.2020.101195_b0225","doi-asserted-by":"crossref","unstructured":"R. Jayashree, N. Niveditha, Natural Language Processing Based Question Answering Using Vector Space Model, Proceedings of Sixth International Conference on Soft Computing for Problem Solving, Springer, 2017, pp. 368-375. https:\/\/doi.org\/10.1007\/978-981-10-3325-4_37.","DOI":"10.1007\/978-981-10-3325-4_37"},{"key":"10.1016\/j.aei.2020.101195_b0230","first-page":"4","article-title":"A review of machine learning algorithms for text-documents classification","volume":"1","author":"Khan","year":"2010","journal-title":"J. Adv. Inform. Technol."},{"key":"10.1016\/j.aei.2020.101195_b0235","unstructured":"A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, \u0141. Kaiser, I. Polosukhin, Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017, pp. 5998-6008."},{"key":"10.1016\/j.aei.2020.101195_b0240","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1016\/j.ipm.2010.03.011","article-title":"Compositional question answering: A divide and conquer approach","volume":"47","author":"Oh","year":"2011","journal-title":"Inform. Process. Manag."},{"key":"10.1016\/j.aei.2020.101195_b0245","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1016\/j.ipm.2015.04.006","article-title":"MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies","volume":"51","author":"Abacha","year":"2015","journal-title":"Inform. Process. Manage."},{"key":"10.1016\/j.aei.2020.101195_b0250","doi-asserted-by":"crossref","unstructured":"P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD: 100, 000+ Questions for Machine Comprehension of Text. EMNLP, 2016. https:\/\/doi.org\/10.18653\/v1\/D16-1264.","DOI":"10.18653\/v1\/D16-1264"},{"key":"10.1016\/j.aei.2020.101195_b0255","unstructured":"Y. Song, Z. Jun, H. Wen, Improved KMP algorithm. J. East. Chin. Norm. Univ: Nat. Sci. Ed, 32(4)(2009), pp. 92-97. https:\/\/doi.org\/ 10.1360\/972009-1549."},{"key":"10.1016\/j.aei.2020.101195_b0260","article-title":"A modified Kennard-Stone algorithm for optimal division of data for developing artificial neural network models","volume":"7","author":"Saptoro","year":"2012","journal-title":"Chem. Product. Process. Model."},{"key":"10.1016\/j.aei.2020.101195_b0265","doi-asserted-by":"crossref","unstructured":"W. Yang, Y. Xie, A. Lin, X. Li, L. Tan, K. Xiong, M. Li, J. Lin, End-to-End Open-Domain Question Answering with BERTserini. NAACL HLT, 2019, pp.72. https:\/\/doi.org\/ 10.18653\/v1\/N19-4013.","DOI":"10.18653\/v1\/N19-4013"}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034620301658?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034620301658?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,18]],"date-time":"2021-01-18T08:06:58Z","timestamp":1610957218000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1474034620301658"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":53,"alternative-id":["S1474034620301658"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2020.101195","relation":{},"ISSN":["1474-0346"],"issn-type":[{"type":"print","value":"1474-0346"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A building regulation question answering system: A deep learning methodology","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2020.101195","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101195"}}