{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T11:56:52Z","timestamp":1726919812587},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,8,1]],"date-time":"2017-08-01T00:00:00Z","timestamp":1501545600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002885","name":"China Meteorological Administration","doi-asserted-by":"publisher","award":["CMAHX20160701"],"id":[{"id":"10.13039\/501100002885","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Beijing talents Fund","award":["2015000057592G270"]},{"DOI":"10.13039\/501100004826","name":"Beijing Natural Science Foundation","doi-asserted-by":"publisher","award":["8174078"],"id":[{"id":"10.13039\/501100004826","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Institute of Crustal Dynamics, China Earthquake Administration","award":["ZDJ2016-12"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advanced Engineering Informatics"],"published-print":{"date-parts":[[2017,8]]},"DOI":"10.1016\/j.aei.2017.05.003","type":"journal-article","created":{"date-parts":[[2017,5,30]],"date-time":"2017-05-30T21:03:15Z","timestamp":1496178195000},"page":"89-95","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":57,"special_numbering":"C","title":["A novel approach for precipitation forecast via improved K-nearest neighbor algorithm"],"prefix":"10.1016","volume":"33","author":[{"given":"Mingming","family":"Huang","sequence":"first","affiliation":[]},{"given":"Runsheng","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Tengfei","family":"Xing","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.aei.2017.05.003_b0005","doi-asserted-by":"crossref","DOI":"10.1002\/qj.2733","article-title":"Precipitation representation over a two year period in regional reanalysis","author":"Jermey","year":"2016","journal-title":"Quart. J. Roy. Meteorol. Soc."},{"key":"10.1016\/j.aei.2017.05.003_b0010","unstructured":"L. Dubus, Monthly and seasonal forecasts in the French power sector, 2012."},{"issue":"5","key":"10.1016\/j.aei.2017.05.003_b0015","doi-asserted-by":"crossref","first-page":"9813","DOI":"10.5194\/bgd-8-9813-2011","article-title":"How do more extreme rainfall regimes affect ecosystem fluxes in seasonally water-limited northern hemisphere temperate shrublands and forests?","volume":"8","author":"Ross","year":"2011","journal-title":"Biogeosci. Discuss."},{"issue":"6","key":"10.1016\/j.aei.2017.05.003_b0020","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1016\/j.ecolecon.2010.12.020","article-title":"A review on cost-effectiveness analysis of agri-environmental measures related to the eu wfd: key issues, methods, and applications","volume":"70","author":"Balana","year":"2011","journal-title":"Ecol. Econ."},{"issue":"3","key":"10.1016\/j.aei.2017.05.003_b0025","doi-asserted-by":"crossref","first-page":"518","DOI":"10.1007\/s11430-015-5224-1","article-title":"Prediction and predictability of a catastrophic local extreme precipitation event through cloud-resolving ensemble analysis and forecasting with doppler radar observations","volume":"59","author":"Qiu","year":"2016","journal-title":"Sci. China Earth Sci."},{"issue":"6-7","key":"10.1016\/j.aei.2017.05.003_b0030","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1016\/S0895-7177(00)00272-7","article-title":"An application of artificial neural networks for rainfall forecasting","volume":"33","author":"Luk","year":"2001","journal-title":"Math. Comput. Modell."},{"issue":"6","key":"10.1016\/j.aei.2017.05.003_b0035","first-page":"325","article-title":"Novel weighted nearest neighbor algorithm of precipitation forecast experiment","volume":"31","author":"Chen","year":"2014","journal-title":"Comput. Simul."},{"key":"10.1016\/j.aei.2017.05.003_b0040","unstructured":"H.X. Li, C.W. Li, Construction and application of fuzzy neural network model in precipitation forecast of Sanjiang Plain, China, 2008, pp. 1\u20133."},{"key":"10.1016\/j.aei.2017.05.003_b0045","series-title":"Intelligent Data Understanding","first-page":"39","article-title":"Machine learning enhancement of storm scale ensemble precipitation forecasts","author":"Gagne Ii","year":"2011"},{"issue":"1","key":"10.1016\/j.aei.2017.05.003_b0050","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.jhydrol.2004.06.028","article-title":"Artificial neural network technique for rainfall forecasting applied to the sao paulo region","volume":"301","author":"Ram\u00edrez","year":"2005","journal-title":"J. Hydrol."},{"issue":"50","key":"10.1016\/j.aei.2017.05.003_b0055","doi-asserted-by":"crossref","first-page":"4243","DOI":"10.1109\/TGRS.2012.2194158","article-title":"Improved regional analyses and heavy precipitation forecasts with assimilation of atmospheric infrared sounder retrieved thermodynamic profiles","volume":"50","author":"Zavodsky","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sensing"},{"key":"10.1016\/j.aei.2017.05.003_b0060","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.dynatmoce.2016.02.001","article-title":"Wavelet-based verification of the quantitative precipitation forecast","volume":"74","author":"Yano","year":"2016","journal-title":"Dynam. Atmos. Oceans"},{"issue":"123","key":"10.1016\/j.aei.2017.05.003_b0065","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.atmosres.2015.09.026","article-title":"A three-dimensional wrf-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event","volume":"169","author":"Huang","year":"2016","journal-title":"Atmos. Res."},{"issue":"1C4","key":"10.1016\/j.aei.2017.05.003_b0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2014\/203545","article-title":"Feature selection for very short-term heavy rainfall prediction using evolutionary computation","volume":"2014","author":"Seo","year":"2014","journal-title":"Adv. Meteorol."},{"issue":"4","key":"10.1016\/j.aei.2017.05.003_b0075","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1007\/s11629-014-3360-2","article-title":"Long-range precipitation forecasts using paleoclimate reconstructions in the western united states","volume":"13","author":"Christopher","year":"2016","journal-title":"J. Mountain Sci."},{"key":"10.1016\/j.aei.2017.05.003_b0080","series-title":"Asian Conference on Intelligent Information and Database Systems","first-page":"79","article-title":"Hybrid pso and ga for neural network evolutionary in monthly rainfall forecasting","author":"Jiang","year":"2013"},{"issue":"1","key":"10.1016\/j.aei.2017.05.003_b0085","first-page":"41","article-title":"Rainfall forecasting by technological machine learning models","volume":"200","author":"Hong","year":"2008","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.aei.2017.05.003_b0090","doi-asserted-by":"crossref","unstructured":"Y. Di, W. Ding, Y. Mu, S. Small, David L.and Islam, N.-B. Chang, Developing machine learning tools for long-lead heavy precipitation prediction with multi-sensor data, 2015, pp. 63\u201368.","DOI":"10.1109\/ICNSC.2015.7116011"},{"key":"10.1016\/j.aei.2017.05.003_b0095","first-page":"1","article-title":"A new rainfall forecasting model using the capso algorithm and an artificial neural network","author":"Beheshti","year":"2015","journal-title":"Neural Comput. Appl."},{"issue":"4","key":"10.1016\/j.aei.2017.05.003_b0100","first-page":"471","article-title":"Forecasting precipitation experiment with knn based on crossing verification technology","volume":"19","author":"School","year":"2008","journal-title":"J. Appl. Meteorol. Sci."},{"issue":"1","key":"10.1016\/j.aei.2017.05.003_b0105","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","article-title":"Nearest neighbor pattern classification","volume":"13","author":"Cover","year":"1967","journal-title":"IEEE Trans. Inform. Theory"},{"issue":"1","key":"10.1016\/j.aei.2017.05.003_b0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10115-007-0114-2","article-title":"Top 10 algorithms in data mining","volume":"14","author":"Wu","year":"2008","journal-title":"Knowl. Inform. Syst."},{"key":"10.1016\/j.aei.2017.05.003_b0115","series-title":"Introduction to Statistical Pattern Recognition","author":"Pudil","year":"1990"},{"issue":"C","key":"10.1016\/j.aei.2017.05.003_b0120","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.knosys.2014.07.020","article-title":"Improved pseudo nearest neighbor classification","volume":"70","author":"Gou","year":"2014","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.aei.2017.05.003_b0125","first-page":"1","article-title":"Comparison of different weighting schemes for the knn classifier on time-series data","volume":"48","author":"Geler","year":"2015","journal-title":"Knowl. Inform. Syst."},{"issue":"4","key":"10.1016\/j.aei.2017.05.003_b0130","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1109\/TSMC.1976.5408784","article-title":"The distance-weighted k-nearest-neighbor rule","volume":"SMC-6","author":"Dudani","year":"1976","journal-title":"IEEE Trans. Syst. Man Cybernet."},{"issue":"6","key":"10.1016\/j.aei.2017.05.003_b0135","article-title":"A new distance-weighted k-nearest neighbor classifier","volume":"9","author":"Gou","year":"2012","journal-title":"J. Inform. Comput. Sci."},{"issue":"1","key":"10.1016\/j.aei.2017.05.003_b0140","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1007\/s00170-016-8418-6","article-title":"Human performance modeling for manufacturing based on an improved knn algorithm","volume":"84","author":"Li","year":"2016","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"1996","key":"10.1016\/j.aei.2017.05.003_b0145","first-page":"437","article-title":"The ncep\/ncar 40-year reanalysis project","volume":"77","author":"Kalnay","year":"1995","journal-title":"Bull. Am. Meteorol. Soc."},{"issue":"4865","key":"10.1016\/j.aei.2017.05.003_b0150","first-page":"599","article-title":"Seasonal precipitation forecast skill over iran","volume":"241","author":"Shirvani","year":"2015","journal-title":"Int. J. Climatol."},{"key":"10.1016\/j.aei.2017.05.003_b0155","series-title":"International Conference on Machine Learning","first-page":"233","article-title":"The relationship between precision-recall and roc curves","author":"Davis","year":"2006"}],"container-title":["Advanced Engineering Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034616304621?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1474034616304621?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,25]],"date-time":"2019-09-25T04:22:01Z","timestamp":1569385321000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1474034616304621"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8]]},"references-count":31,"alternative-id":["S1474034616304621"],"URL":"https:\/\/doi.org\/10.1016\/j.aei.2017.05.003","relation":{},"ISSN":["1474-0346"],"issn-type":[{"value":"1474-0346","type":"print"}],"subject":[],"published":{"date-parts":[[2017,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel approach for precipitation forecast via improved K-nearest neighbor algorithm","name":"articletitle","label":"Article Title"},{"value":"Advanced Engineering Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.aei.2017.05.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}