{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T20:40:35Z","timestamp":1731098435131,"version":"3.28.0"},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100005645","name":"Socialist Republic of Vietnam Ministry of Education and Training","doi-asserted-by":"publisher","award":["B2023-GHA-03"],"id":[{"id":"10.13039\/501100005645","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Advances in Engineering Software"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.advengsoft.2024.103795","type":"journal-article","created":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T23:44:37Z","timestamp":1729381477000},"page":"103795","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A two-step approach for damage identification in bridge structure using convolutional Long Short-Term Memory with augmented time-series data"],"prefix":"10.1016","volume":"198","author":[{"given":"Lan","family":"Nguyen-Ngoc","sequence":"first","affiliation":[]},{"given":"Hoa","family":"Tran-Ngoc","sequence":"additional","affiliation":[]},{"given":"Thang","family":"Le-Xuan","sequence":"additional","affiliation":[]},{"given":"Chi-Thanh","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Guido","family":"De Roeck","sequence":"additional","affiliation":[]},{"given":"Thanh","family":"Bui-Tien","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3610-865X","authenticated-orcid":false,"given":"Magd","family":"Abdel Wahab","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.advengsoft.2024.103795_bib0001","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1080\/10168664.2018.1558033","article-title":"Once upon a time in Italy: the tale of the Morandi bridge","volume":"29","author":"Calvi","year":"2019","journal-title":"Struc Eng Int"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0002","unstructured":"H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler, J.J. Czarnecki, A review of structural health monitoring literature: 1996\u20132001, Los Alamos National Laboratory, USA 1 (2003) 16. 10.12989\/sss.2022.29.1.181."},{"key":"10.1016\/j.advengsoft.2024.103795_bib0003","unstructured":"R.J. Barthorpe, On model-and data-based approaches to structural health monitoring, (2010)."},{"year":"2012","series-title":"Structural health monitoring: a machine learning perspective","author":"Farrar","key":"10.1016\/j.advengsoft.2024.103795_bib0004"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0005","doi-asserted-by":"crossref","first-page":"20143","DOI":"10.1038\/s41598-022-24445-6","article-title":"Damage assessment of suspension footbridge using vibration measurement data combined with a hybrid bee-genetic algorithm","volume":"12","author":"Ngoc-Nguyen","year":"2022","journal-title":"Sci Rep"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0006","doi-asserted-by":"crossref","first-page":"e510","DOI":"10.1590\/1679-78257696","article-title":"An effective approach for damage detection using reduction model technique and optimization algorithms","volume":"20","author":"Ngoc","year":"2023","journal-title":"Lat Am j Solids Struct"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0007","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1061\/(ASCE)CF.1943-5509.0000071","article-title":"Model-based damage identification in a continuous bridge using vibration data","volume":"24","author":"Bagchi","year":"2010","journal-title":"J Perform Construc Facilities"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0008","doi-asserted-by":"crossref","DOI":"10.1142\/S0219455423500438","article-title":"A novel method for damage identification based on tuning-free strategy and simple population metropolis\u2013hastings algorithm","volume":"23","author":"Luo","year":"2023","journal-title":"Int J Str Stab Dyn"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0009","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1177\/14759217221098998","article-title":"A hybrid structural health monitoring approach for damage detection in steel bridges under simulated environmental conditions using numerical and experimental data","volume":"22","author":"Svendsen","year":"2023","journal-title":"Struct Health Monit"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0010","doi-asserted-by":"crossref","first-page":"1209","DOI":"10.3390\/buildings12081209","article-title":"Temperature effect on vibration properties and vibration-based damage identification of bridge structures: a literature review","volume":"12","author":"Luo","year":"2022","journal-title":"Buildings"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0011","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1061\/(ASCE)EM.1943-7889.0000331","article-title":"Application of orthogonal decomposition approaches to long-term monitoring of infrastructure systems","volume":"139","author":"Kallinikidou","year":"2013","journal-title":"J Eng Mech"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110934","article-title":"Data-driven modeling of long temperature time-series to capture the thermal behavior of bridges for SHM purposes","volume":"206","author":"Mariani","year":"2024","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0013","doi-asserted-by":"crossref","first-page":"e165","DOI":"10.1590\/1679-78254942","article-title":"An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements","volume":"16","author":"Finotti","year":"2019","journal-title":"Lat Am J Solids Struct"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.engstruct.2024.118510","article-title":"Physics-guided deep learning based on modal sensitivity for structural damage identification with unseen damage patterns","volume":"316","author":"Lei","year":"2024","journal-title":"Eng Struct"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0015","doi-asserted-by":"crossref","first-page":"1474","DOI":"10.1080\/15732479.2020.1815225","article-title":"Deep learning-based detection of structural damage using time-series data","volume":"17","author":"Dang","year":"2021","journal-title":"Struc Infrastruc Eng"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0016","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1007\/s00521-022-07773-6","article-title":"Real-time structural damage assessment using LSTM networks: regression and classification approaches","volume":"35","author":"Sharma","year":"2023","journal-title":"Neural Comput & Applic"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0017","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104249","article-title":"Automated location of steel truss bridge damage using machine learning and raw strain sensor data","volume":"138","author":"Parisi","year":"2022","journal-title":"Autom Constr"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0018","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104293","article-title":"Subway tunnel damage detection based on in-service train dynamic response, variational mode decomposition, convolutional neural networks and long short-term memory","volume":"139","author":"Zhang","year":"2022","journal-title":"Autom Constr"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0019","doi-asserted-by":"crossref","DOI":"10.1016\/j.conbuildmat.2022.127129","article-title":"Determination of pith location along Norway spruce timber boards using one-dimensional convolutional neural networks trained on virtual timber boards","volume":"329","author":"Habite","year":"2022","journal-title":"Constr Build Mater"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0020","series-title":"Advances in frontier research on engineering structures","article-title":"Prediction method of structural health monitoring data based on CNN-LSTM","author":"Liu","year":"2023"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0021","first-page":"181","article-title":"CNN based data anomaly detection using multi-channel imagery for structural health monitoring","volume":"29","author":"V S","year":"2022","journal-title":"Smart Struct Syst"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0022","first-page":"53","article-title":"Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN","volume":"29","author":"Liu","year":"2022","journal-title":"Smart Struct Syst"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108201","article-title":"Ensemble of recurrent neural networks with long short-term memory cells for high-rate structural health monitoring","volume":"164","author":"Barzegar","year":"2022","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0024","series-title":"Civil engineering and disaster prevention","article-title":"Sensor fault classification for bridge SHM using LSTM-based with 1D-CNN feature extraction","author":"Guo","year":"2023"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.ultras.2022.106685","article-title":"CNN-LSTM network-based damage detection approach for copper pipeline using laser ultrasonic scanning","volume":"121","author":"Huang","year":"2022","journal-title":"Ultrasonics"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.istruc.2023.105784","article-title":"A novel approach model design for signal data using 1DCNN combing with LSTM and ResNet for damaged detection problem","volume":"59","author":"Le-Xuan","year":"2024","journal-title":"Structures"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0027","doi-asserted-by":"crossref","DOI":"10.1016\/j.conbuildmat.2024.137240","article-title":"Enhancing bridge damage assessment: adaptive cell and deep learning approaches in time-series analysis","volume":"439","author":"Bui-Tien","year":"2024","journal-title":"Constr Build Mater"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110715","article-title":"A vibration-based 1DCNN-BiLSTM model for structural state recognition of RC beams","volume":"203","author":"Chen","year":"2023","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0029","doi-asserted-by":"crossref","first-page":"287","DOI":"10.3390\/a15080287","article-title":"CNN based on transfer learning models using data augmentation and transformation for detection of concrete crack","volume":"15","author":"Islam","year":"2022","journal-title":"Algorithms"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0030","doi-asserted-by":"crossref","first-page":"6193","DOI":"10.3390\/s22166193","article-title":"Data augmentation for deep-learning-based multiclass structural damage detection using limited information","volume":"22","author":"Dunphy","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0031","doi-asserted-by":"crossref","first-page":"1186","DOI":"10.3390\/sym13071186","article-title":"Data anomaly detection of bridge structures using convolutional neural network based on structural vibration signals","volume":"13","author":"Zhang","year":"2021","journal-title":"Symmetry"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0032","article-title":"Data anomaly detection through semisupervised learning aided by customised data augmentation techniques","volume":"2023","author":"Wang","year":"2023","journal-title":"Struc Control Heal Monit"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0033","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.32604\/cmc.2023.046324","article-title":"Defect detection model using time series data augmentation and transformation","volume":"78","author":"Kim","year":"2024","journal-title":"CMC"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0034","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1080\/17445302.2020.1735844","article-title":"Deep machine learning for structural health monitoring on ship hulls using acoustic emission method","volume":"16","author":"Karvelis","year":"2021","journal-title":"Ship Offshore Struc"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0035","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/s13349-022-00627-8","article-title":"Generative adversarial networks for labeled acceleration data augmentation for structural damage detection","volume":"13","author":"Luleci","year":"2023","journal-title":"J Civil Struct Health Monit"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0036","doi-asserted-by":"crossref","first-page":"1372","DOI":"10.1002\/cae.22391","article-title":"Stabil: an educational Matlab toolbox for static and dynamic structural analysis","volume":"29","author":"Fran\u00e7ois","year":"2021","journal-title":"Comp Appl Eng Educ"},{"year":"2014","series-title":"the MATLAB toolbox for experimental and operational modal analysis, departement Burgerlijke Bouwkunde KU Leuven","key":"10.1016\/j.advengsoft.2024.103795_bib0037"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0038","series-title":"Proceedings of the 2nd International Conference on Structural Damage Modelling and Assessment","first-page":"3","article-title":"Finite element model updating of lifeline truss bridge using vibration-based measurement data and balancing composite motion optimization","author":"Ngoc-Nguyen","year":"2022"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0039","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1061\/(ASCE)0733-9445(2006)132:9(1491)","article-title":"Structural damage detection via modal data with genetic algorithms","volume":"132","author":"Perera","year":"2006","journal-title":"J Struc Eng"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0040","doi-asserted-by":"crossref","first-page":"2300","DOI":"10.3390\/math12152300","article-title":"Deep neural network and evolved optimization algorithm for damage assessment in a truss bridge","volume":"12","author":"Nguyen-Ngoc","year":"2024","journal-title":"Mathematics"},{"key":"10.1016\/j.advengsoft.2024.103795_bib0041","unstructured":"D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, (2017). 10.48550\/arXiv.1412.6980."}],"container-title":["Advances in Engineering Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0965997824002023?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0965997824002023?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T20:18:53Z","timestamp":1731097133000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0965997824002023"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":41,"alternative-id":["S0965997824002023"],"URL":"https:\/\/doi.org\/10.1016\/j.advengsoft.2024.103795","relation":{},"ISSN":["0965-9978"],"issn-type":[{"type":"print","value":"0965-9978"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A two-step approach for damage identification in bridge structure using convolutional Long Short-Term Memory with augmented time-series data","name":"articletitle","label":"Article Title"},{"value":"Advances in Engineering Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.advengsoft.2024.103795","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"103795"}}