{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T19:33:14Z","timestamp":1744313594036,"version":"3.37.3"},"reference-count":80,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,5,8]],"date-time":"2023-05-08T00:00:00Z","timestamp":1683504000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,5,8]],"date-time":"2023-05-08T00:00:00Z","timestamp":1683504000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1836218","62106089"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Vis. Intell."],"abstract":"Abstract<\/jats:title>Discriminative correlation filters (DCF) with powerful feature descriptors have proven to be very effective for advanced visual object tracking approaches. However, due to the fixed capacity in achieving discriminative learning, existing DCF trackers perform the filter training on a single template extracted by convolutional neural networks (CNN) or hand-crafted descriptors. Such single template learning cannot provide powerful discriminative filters with guaranteed validity under appearance variation. To pinpoint the structural relevance of spatio-temporal appearance to the filtering system, we propose a new tracking algorithm that incorporates the construction of the Grassmannian manifold learning in the DCF formulation. Our method constructs the model appearance within an online updated affine subspace. It enables joint discriminative learning in the origin and basis of the subspace, achieving enhanced discrimination and interpretability of the learned filters. In addition, to improve tracking efficiency, we adaptively integrate online incremental learning to update the obtained manifold. To this end, specific spatio-temporal appearance patterns are dynamically learned during tracking, highlighting relevant variations and alleviating the performance degrading impact of less discriminative representations from a single template. The experimental results obtained on several well-known datasets, i.e., OTB2013, OTB2015, UAV123, and VOT2018, demonstrate the merits of the proposed method and its superiority over the state-of-the-art trackers.<\/jats:p>","DOI":"10.1007\/s44267-023-00002-1","type":"journal-article","created":{"date-parts":[[2023,5,8]],"date-time":"2023-05-08T02:01:30Z","timestamp":1683511290000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":29,"title":["Learning spatio-temporal discriminative model for affine subspace based visual object tracking"],"prefix":"10.1007","volume":"1","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9015-3128","authenticated-orcid":false,"given":"Tianyang","family":"Xu","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0262-5891","authenticated-orcid":false,"given":"Xue-Feng","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0310-5778","authenticated-orcid":false,"given":"Xiao-Jun","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,8]]},"reference":[{"issue":"3","key":"2_CR1","doi-asserted-by":"publisher","first-page":"583","DOI":"10.1109\/TPAMI.2014.2345390","volume":"37","author":"J. F. Henriques","year":"2015","unstructured":"Henriques, J. F., Rui, C., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583\u2013596.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2_CR2","first-page":"2411","volume-title":"IEEE conference on computer vision and pattern recognition","author":"Y. Wu","year":"2013","unstructured":"Wu, Y., Lim, J., & Yang, M. H. (2013). Online object tracking: a benchmark. In IEEE conference on computer vision and pattern recognition (pp.\u00a02411\u20132418). Los Alamitos: IEEE."},{"issue":"9","key":"2_CR3","doi-asserted-by":"publisher","first-page":"1834","DOI":"10.1109\/TPAMI.2014.2388226","volume":"37","author":"Y. Wu","year":"2015","unstructured":"Wu, Y., Lim, J., & Yang, M.-H. (2015). Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1834\u20131848.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2_CR4","first-page":"445","volume-title":"European conference on computer vision","author":"M. Mueller","year":"2016","unstructured":"Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and simulator for uav tracking. In European conference on computer vision (pp.\u00a0445\u2013461). Berlin: Springer."},{"key":"2_CR5","doi-asserted-by":"publisher","first-page":"1949","DOI":"10.1109\/ICCVW.2017.230","volume-title":"2017 IEEE international conference on computer vision workshops","author":"M. Kristan","year":"2017","unstructured":"Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Zajc, L. C., Vojir, T., Hager, G., Lukezic, A., Eldesokey, A., & Fernandez, G. (2017). The visual object tracking VOT2017 challenge results. In 2017 IEEE international conference on computer vision workshops (pp.\u00a01949\u20131972). Los Alamitos: IEEE. https:\/\/doi.org\/10.1109\/ICCVW.2017.230."},{"key":"2_CR6","first-page":"3","volume-title":"ECCV workshops 2018","author":"M. Kristan","year":"2018","unstructured":"Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pfugfelder, R., Zajc, L. C., Vojir, T., Bhat, G., Lukezic, A., Eldesokey, A., Fernandez, G., et al. (2018). The sixth visual object tracking VOT2018 challenge results. In ECCV workshops 2018 (pp.\u00a03\u201353). Berlin: Springer."},{"key":"2_CR7","first-page":"199","volume-title":"Proceedings of the IEEE international conference on computer vision workshops","author":"D. Dawei","year":"2019","unstructured":"Dawei, D., Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q., et al. (2019). VisDrone-SOT2019: the vision meets drone single object tracking challenge results. In Proceedings of the IEEE international conference on computer vision workshops (pp.\u00a0199\u2013212). Los Alamitos: IEEE."},{"key":"2_CR8","first-page":"728","volume-title":"European conference on computer vision","author":"H. Fan","year":"2020","unstructured":"Fan, H., Wen, L., Du, D., Zhu, P., Hu, Q., Ling, H., et al. (2020). VisDrone-SOT2020: the vision meets drone single object tracking challenge results. In European conference on computer vision (pp.\u00a0728\u2013749). Berlin: Springer."},{"issue":"3","key":"2_CR9","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1561\/0100000006","volume":"2","author":"R. M. Gray","year":"2006","unstructured":"Gray, R. M. (2006). Toeplitz and circulant matrices: a review. Foundations and Trends in Communications and Information Theory, 2(3), 155\u2013239.","journal-title":"Foundations and Trends in Communications and Information Theory"},{"key":"2_CR10","first-page":"702","volume-title":"European conference on computer vision","author":"J. F. Henriques","year":"2012","unstructured":"Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2012). Exploiting the circulant structure of tracking-by-detection with kernels. In European conference on computer vision (pp.\u00a0702\u2013715). Berlin: Springer."},{"key":"2_CR11","first-page":"1090","volume-title":"IEEE conference on computer vision and pattern recognition","author":"M. Danelljan","year":"2014","unstructured":"Danelljan, M., Khan, F. S., Felsberg, M., & Van De Weijer, J. (2014). Adaptive color attributes for real-time visual tracking. In IEEE conference on computer vision and pattern recognition (pp.\u00a01090\u20131097). Los Alamitos: IEEE."},{"key":"2_CR12","first-page":"7950","volume-title":"Proceedings of the IEEE international conference on computer vision","author":"T. Xu","year":"2019","unstructured":"Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2019). Joint group feature selection and discriminative filter learning for robust visual object tracking. In Proceedings of the IEEE international conference on computer vision (pp.\u00a07950\u20137960). Los Alamitos: IEEE."},{"key":"2_CR13","first-page":"472","volume-title":"European conference on computer vision","author":"D. Martin","year":"2016","unstructured":"Martin, D., Andreas, R., Fahad, K., & Michael, F. (2016). Beyond correlation filters: learning continuous convolution operators for visual tracking. In European conference on computer vision (pp.\u00a0472\u2013488). Berlin: Springer."},{"key":"2_CR14","first-page":"1401","volume-title":"IEEE conference on computer vision and pattern recognition","author":"L. Bertinetto","year":"2016","unstructured":"Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., & Torr, P. H. S. (2016). Staple: complementary learners for real-time tracking. In IEEE conference on computer vision and pattern recognition (Vol.\u00a038, pp.\u00a01401\u20131409). Los Alamitos: IEEE."},{"key":"2_CR15","first-page":"4310","volume-title":"IEEE international conference on computer vision","author":"M. Danelljan","year":"2015","unstructured":"Danelljan, M., Hager, G., Khan, F. S., & Felsberg, M. (2015). Learning spatially regularized correlation filters for visual tracking. In IEEE international conference on computer vision (pp.\u00a04310\u20134318). Los Alamitos: IEEE."},{"key":"2_CR16","first-page":"4847","volume-title":"IEEE conference on computer vision and pattern recognition","author":"A. Lukezic","year":"2017","unstructured":"Lukezic, A., Vojir, T., Zajc, L. C., Matas, J., & Kristan, M. (2017). Discriminative correlation filter with channel and spatial reliability. In IEEE conference on computer vision and pattern recognition (pp.\u00a04847\u20134856). Los Alamitos: IEEE."},{"key":"2_CR17","first-page":"469","volume-title":"Proceedings of the European conference on computer vision (ECCV)","author":"M. Zhang","year":"2018","unstructured":"Zhang, M., Wang, Q., Xing, J., Gao, J., Peng, P., Hu, W., & Maybank, S. (2018). Visual tracking via spatially aligned correlation filters network. In Proceedings of the European conference on computer vision (ECCV) (pp.\u00a0469\u2013485). Berlin: Springer."},{"key":"2_CR18","first-page":"1430","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"M. Danelljan","year":"2016","unstructured":"Danelljan, M., Hager, G., Khan, F. S., & Felsberg, M. (2016). Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a01430\u20131438). Los Alamitos: IEEE."},{"doi-asserted-by":"crossref","unstructured":"Li, F., Tian, C., Zuo, W., Zhang, L., & Yang, M.-H. (2018). Learning spatial-temporal regularized correlation filters for visual tracking. arXiv preprint. arXiv:1803.08679.","key":"2_CR19","DOI":"10.1109\/CVPR.2018.00515"},{"key":"2_CR20","first-page":"6931","volume-title":"IEEE conference on computer vision and pattern recognition","author":"M. Danelljan","year":"2017","unstructured":"Danelljan, M., Bhat, G., Khan, F. S., & Eco, M. F. (2017). Efficient convolution operators for tracking. In IEEE conference on computer vision and pattern recognition (pp.\u00a06931\u20136939). Los Alamitos: IEEE."},{"key":"2_CR21","first-page":"1097","volume-title":"Advances in neural information processing systems 25 (NIPS 2012)","author":"A. Krizhevsky","year":"2012","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C.\u00a0J. Burges, L.\u00a0Bottou, & K.\u00a0Q. Weinberger (Eds.), Advances in neural information processing systems 25 (NIPS 2012) (pp.\u00a01097\u20131105). Red Hook: Curran Associates."},{"key":"2_CR22","first-page":"1","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"C. Szegedy","year":"2015","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a01\u20139). Los Alamitos: IEEE."},{"key":"2_CR23","first-page":"770","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"K. He","year":"2016","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a0770\u2013778). Los Alamitos: IEEE."},{"issue":"1","key":"2_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3200489","volume":"10","author":"D. Liu","year":"2018","unstructured":"Liu, D., Cui, W., Jin, K., Guo, Y., & Qu, H. (2018). Deeptracker: visualizing the training process of convolutional neural networks. ACM Transactions on Intelligent Systems and Technology, 10(1), 1\u201325.","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"2_CR25","first-page":"674","volume-title":"Proceedings of the 7th international joint conference on artificial intelligence (IJCAI\u201981)","author":"B. D. Lucas","year":"1981","unstructured":"Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th international joint conference on artificial intelligence (IJCAI\u201981) (pp.\u00a0674\u2013679). Los Altos: William Kaufmann."},{"issue":"8","key":"2_CR26","doi-asserted-by":"publisher","first-page":"1064","DOI":"10.1109\/TPAMI.2004.53","volume":"26","author":"S. Avidan","year":"2004","unstructured":"Avidan, S. (2004). Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1064\u20131072.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"2","key":"2_CR27","doi-asserted-by":"publisher","first-page":"174","DOI":"10.1109\/78.978374","volume":"50","author":"M. S. Arulampalam","year":"2002","unstructured":"Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear\/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174\u2013188.","journal-title":"IEEE Transactions on Signal Processing"},{"issue":"1\u20133","key":"2_CR28","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1007\/s11263-007-0075-7","volume":"77","author":"D. A. Ross","year":"2008","unstructured":"Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1\u20133), 125\u2013141.","journal-title":"International Journal of Computer Vision"},{"key":"2_CR29","first-page":"8971","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"B. Li","year":"2018","unstructured":"Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with Siamese region proposal network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a08971\u20138980). Los Alamitos: IEEE."},{"issue":"4","key":"2_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2508037.2508039","volume":"4","author":"X. Li","year":"2013","unstructured":"Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., & Van Den Hengel, A. (2013). A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 4(4), 1\u201348.","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"issue":"2","key":"2_CR31","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1109\/TPAMI.2015.2417577","volume":"38","author":"A. Li","year":"2016","unstructured":"Li, A., Lin, M., Wu, Y., Yang, M. H., & Yan, S. (2016). Nus-pro: a new visual tracking challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 335\u2013349.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"4","key":"2_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3391743","volume":"11","author":"R. Yao","year":"2020","unstructured":"Yao, R., Lin, G., Xia, S., Zhao, J., & Zhou, Y. (2020). Video object segmentation and tracking: a survey. ACM Transactions on Intelligent Systems and Technology, 11(4), 1\u201347.","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"2_CR33","first-page":"142","volume-title":"IEEE conference on computer vision and pattern recognition","author":"D. Comaniciu","year":"2000","unstructured":"Comaniciu, D., Ramesh, V., & Meer, P. (2000). Real-time tracking of non-rigid objects using mean shift. In IEEE conference on computer vision and pattern recognition (pp.\u00a0142\u2013149). Los Alamitos: IEEE."},{"issue":"3","key":"2_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2824286","volume":"7","author":"M. Hardegger","year":"2016","unstructured":"Hardegger, M., Roggen, D., Calatroni, A., & Tr\u00f6ster, G. (2016). S-smart: a unified Bayesian framework for simultaneous semantic mapping, activity recognition, and tracking. ACM Transactions on Intelligent Systems and Technology, 7(3), 1\u201328.","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"issue":"3","key":"2_CR35","first-page":"1","volume":"3","author":"S. Zhang","year":"2012","unstructured":"Zhang, S., Yao, H., Sun, X., & Liu, S. (2012). Robust visual tracking using an effective appearance model based on sparse coding. ACM Transactions on Intelligent Systems and Technology, 3(3), 1\u201318.","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"2_CR36","doi-asserted-by":"crossref","first-page":"3880","DOI":"10.1109\/CVPR.2016.421","volume-title":"2016 IEEE conference on computer vision and pattern recognition","author":"T. Zhang","year":"2016","unstructured":"Zhang, T., Bibi, A., & Ghanem, B. (2016). In defense of sparse tracking: circulant sparse tracker. In 2016 IEEE conference on computer vision and pattern recognition (pp.\u00a03880\u20133888). Los Alamitos: IEEE."},{"issue":"2","key":"2_CR37","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1007\/s11263-014-0738-0","volume":"111","author":"T. Zhang","year":"2015","unstructured":"Zhang, T., Liu, S., Ahuja, N., Yang, M.-H., & Ghanem, B. (2015). Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 111(2), 171\u2013190.","journal-title":"International Journal of Computer Vision"},{"issue":"8","key":"2_CR38","doi-asserted-by":"publisher","first-page":"1619","DOI":"10.1109\/TPAMI.2010.226","volume":"33","author":"B. Babenko","year":"2011","unstructured":"Babenko, B., Yang, M. H., & Belongie, S. (2011). Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1619\u20131632.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2_CR39","first-page":"1420","volume-title":"IEEE conference on computer vision and pattern recognition","author":"R. Tao","year":"2016","unstructured":"Tao, R., Gavves, E., & Smeulders, A. W. M. (2016). Siamese instance search for tracking. In IEEE conference on computer vision and pattern recognition (pp.\u00a01420\u20131429). Los Alamitos: IEEE."},{"key":"2_CR40","first-page":"5000","volume-title":"IEEE conference on computer vision and pattern recognition","author":"J. Valmadre","year":"2017","unstructured":"Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., & Torr, P. H. S. (2017). End-to-end representation learning for correlation filter based tracking. In IEEE conference on computer vision and pattern recognition (pp.\u00a05000\u20135008). Los Alamitos: IEEE."},{"unstructured":"Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2020). Afat: adaptive failure-aware tracker for robust visual object tracking. arXiv preprint. arXiv:2005.13708.","key":"2_CR41"},{"key":"2_CR42","doi-asserted-by":"publisher","first-page":"2544","DOI":"10.1109\/CVPR.2010.5539960","volume-title":"2010 IEEE conference on computer vision and pattern recognition","author":"D. S. Bolme","year":"2010","unstructured":"Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010). Visual object tracking using adaptive correlation filters. In 2010 IEEE conference on computer vision and pattern recognition (pp.\u00a02544\u20132550). Los Alamitos: IEEE."},{"key":"2_CR43","doi-asserted-by":"publisher","first-page":"2105","DOI":"10.1109\/CVPR.2009.5206701","volume-title":"2009 IEEE conference on computer vision and pattern recognition","author":"D. S. Bolme","year":"2009","unstructured":"Bolme, D. S., Draper, B. A., & Beveridge, J. R. (2009). Average of synthetic exact filters. In 2009 IEEE conference on computer vision and pattern recognition (pp.\u00a02105\u20132112). Los Alamitos: IEEE."},{"key":"2_CR44","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1117\/12.421129","volume-title":"Optical pattern recognition XII","author":"K. Briechle","year":"2001","unstructured":"Briechle, K., & Hanebeck, U. D. (2001). Template matching using fast normalized cross correlation. In Optical pattern recognition XII (Vol.\u00a04387, pp.\u00a095\u2013103). Bellingham: International Society for Optics and Photonics."},{"key":"2_CR45","first-page":"127","volume-title":"European conference on computer vision","author":"K. Zhang","year":"2014","unstructured":"Zhang, K., Zhang, L., Liu, Q., Zhang, D., & Yang, M. H. (2014). Fast visual tracking via dense spatio-temporal context learning. In European conference on computer vision (pp.\u00a0127\u2013141). Berlin: Springer."},{"key":"2_CR46","first-page":"254","volume-title":"European conference on computer vision workshops","author":"Y. Li","year":"2014","unstructured":"Li, Y., & Zhu, J. (2014). A scale adaptive kernel correlation filter tracker with feature integration. In European conference on computer vision workshops (pp.\u00a0254\u2013265). Berlin: Springer."},{"issue":"8","key":"2_CR47","doi-asserted-by":"publisher","first-page":"1561","DOI":"10.1109\/TPAMI.2016.2609928","volume":"39","author":"M. Danelljan","year":"2017","unstructured":"Danelljan, M., H\u00e4ger, G., Khan, F. S., & Felsberg, M. (2017). Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(8), 1561\u20131575.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2_CR48","first-page":"353","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"Y. Li","year":"2015","unstructured":"Li, Y., Zhu, J., & Hoi, S. C. H. (2015). Reliable patch trackers: robust visual tracking by exploiting reliable patches. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a0353\u2013361). Los Alamitos: IEEE."},{"key":"2_CR49","first-page":"4312","volume-title":"IEEE conference on computer vision and pattern recognition","author":"S. Liu","year":"2016","unstructured":"Liu, S., Zhang, T., Cao, X., & Xu, C. (2016). Structural correlation filter for robust visual tracking. In IEEE conference on computer vision and pattern recognition (pp.\u00a04312\u20134320). Los Alamitos: IEEE."},{"key":"2_CR50","first-page":"3038","volume-title":"IEEE international conference on computer vision","author":"M. Tang","year":"2015","unstructured":"Tang, M., & Feng, J. (2015). Multi-kernel correlation filter for visual tracking. In IEEE international conference on computer vision (pp.\u00a03038\u20133046). Los Alamitos: IEEE."},{"issue":"10","key":"2_CR51","doi-asserted-by":"publisher","first-page":"3727","DOI":"10.1109\/TCSVT.2019.2945068","volume":"30","author":"T. Xu","year":"2020","unstructured":"Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2020). Learning low-rank and sparse discriminative correlation filters for coarse-to-fine visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 30(10), 3727\u20133739.","journal-title":"IEEE Transactions on Circuits and Systems for Video Technology"},{"issue":"2","key":"2_CR52","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1109\/TPAMI.2018.2797082","volume":"41","author":"T. Zhang","year":"2018","unstructured":"Zhang, T., Xu, C., & Yang, M.-H. (2018). Robust structural sparse tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 473\u2013486.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2_CR53","doi-asserted-by":"publisher","first-page":"1888","DOI":"10.1109\/ICPR.2018.8546146","volume-title":"2018 24th international conference on pattern recognition (ICPR)","author":"T. Xu","year":"2018","unstructured":"Xu, T., Wu, X.-J., & Kittler, J. (2018). Non-negative subspace representation learning scheme for correlation filter based tracking. In 2018 24th international conference on pattern recognition (ICPR) (pp.\u00a01888\u20131893). Los Alamitos: IEEE."},{"key":"2_CR54","first-page":"21","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"M. Wang","year":"2017","unstructured":"Wang, M., Liu, Y., & Huang, Z. (2017). Large margin object tracking with circulant feature maps. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a021\u201326). Los Alamitos: IEEE."},{"issue":"5","key":"2_CR55","doi-asserted-by":"publisher","first-page":"1158","DOI":"10.1109\/TPAMI.2018.2829180","volume":"41","author":"W. Zuo","year":"2018","unstructured":"Zuo, W., Wu, X., Lin, L., Zhang, L., & Yang, M.-H. (2018). Learning support correlation filters for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(5), 1158\u20131172.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2_CR56","first-page":"3","volume-title":"IEEE conference on computer vision and pattern recognition","author":"T. Zhang","year":"2017","unstructured":"Zhang, T., Xu, C., & Yang, M.-H. (2017). Multi-task correlation particle filter for robust object tracking. In IEEE conference on computer vision and pattern recognition (Vol.\u00a01, p.\u00a03). Los Alamitos: IEEE."},{"key":"2_CR57","first-page":"1396","volume-title":"IEEE conference on computer vision and pattern recognition","author":"M. Mueller","year":"2017","unstructured":"Mueller, M., Smith, N., & Ghanem, B. (2017). Context-aware correlation filter tracking. In IEEE conference on computer vision and pattern recognition (pp.\u00a01396\u20131404). Los Alamitos: IEEE."},{"key":"2_CR58","first-page":"103","volume-title":"European conference on computer vision","author":"Z. Zhu","year":"2018","unstructured":"Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., & Hu, W. (2018). Distractor-aware Siamese networks for visual object tracking. In European conference on computer vision (pp.\u00a0103\u2013119). Berlin: Springer."},{"key":"2_CR59","first-page":"1144","volume-title":"IEEE international conference on computer vision","author":"H. K. Galoogahi","year":"2017","unstructured":"Galoogahi, H. K., Fagg, A., & Lucey, S. (2017). Learning background-aware correlation filters for visual tracking. In IEEE international conference on computer vision (pp.\u00a01144\u20131152). Los Alamitos: IEEE."},{"key":"2_CR60","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2019.107172","volume":"102","author":"T. Xu","year":"2020","unstructured":"Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2020). An accelerated correlation filter tracker. Pattern Recognition, 102, 107172.","journal-title":"Pattern Recognition"},{"issue":"5","key":"2_CR61","doi-asserted-by":"publisher","first-page":"3765","DOI":"10.1007\/s40747-021-00544-1","volume":"8","author":"L. Xu","year":"2022","unstructured":"Xu, L., Kim, P., Wang, M., Pan, J., Yang, X., & Gao, M. (2022). Spatio-temporal joint aberrance suppressed correlation filter for visual tracking. Complex & Intelligent Systems, 8(5), 3765\u20133777.","journal-title":"Complex & Intelligent Systems"},{"issue":"5","key":"2_CR62","doi-asserted-by":"publisher","first-page":"1359","DOI":"10.1007\/s11263-021-01435-1","volume":"129","author":"T. Xu","year":"2021","unstructured":"Xu, T., Feng, Z., Wu, X.-J., & Kittler, J. (2021). Adaptive channel selection for robust visual object tracking with discriminative correlation filters. International Journal of Computer Vision, 129(5), 1359\u20131375.","journal-title":"International Journal of Computer Vision"},{"issue":"11","key":"2_CR63","doi-asserted-by":"publisher","first-page":"5596","DOI":"10.1109\/TIP.2019.2919201","volume":"28","author":"T. Xu","year":"2019","unstructured":"Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2019). Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking. IEEE Transactions on Image Processing, 28(11), 5596\u20135609.","journal-title":"IEEE Transactions on Image Processing"},{"key":"2_CR64","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1109\/TMM.2021.3050073","volume":"24","author":"X.-F. Zhu","year":"2021","unstructured":"Zhu, X.-F., Wu, X.-J., Xu, T., Feng, Z.-H., & Kittler, J. (2021). Robust visual object tracking via adaptive attribute-aware discriminative correlation filters. IEEE Transactions on Multimedia, 24, 301\u2013312.","journal-title":"IEEE Transactions on Multimedia"},{"key":"2_CR65","first-page":"496","volume-title":"2021 IEEE international conference on robotics and automation (ICRA)","author":"L. Bowen","year":"2021","unstructured":"Bowen, L., Fu, C., Ding, F., Ye, J., & Lin, F. (2021). Adtrack: target-aware dual filter learning for real-time anti-dark uav tracking. In 2021 IEEE international conference on robotics and automation (ICRA) (pp.\u00a0496\u2013502). Los Alamitos: IEEE."},{"issue":"1","key":"2_CR66","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000016","volume":"3","author":"S. Boyd","year":"2011","unstructured":"Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1\u2013122.","journal-title":"Foundations and Trends in Machine Learning"},{"unstructured":"Petersen, K. B., Pedersen, M. S., et\u00a0al. (2008). The matrix cookbook. Technical University of Denmark, 7(15), 510.","key":"2_CR67"},{"key":"2_CR68","doi-asserted-by":"publisher","first-page":"689","DOI":"10.1145\/2733373.2807412","volume-title":"Proceedings of the 23rd ACM international conference on multimedia","author":"A. Vedaldi","year":"2015","unstructured":"Vedaldi, A., & Lenc, K. (2015). Matconvnet: convolutional neural networks for Matlab. In Proceedings of the 23rd ACM international conference on multimedia (pp.\u00a0689\u2013692). New York: ACM."},{"key":"2_CR69","doi-asserted-by":"publisher","first-page":"777","DOI":"10.1007\/978-3-319-48881-3_54","volume-title":"ECCV 2016 workshops","author":"M. Kristan","year":"2016","unstructured":"Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Zajc, L. \u010c., et al. (2016). The visual object tracking VOT2016 challenge results. In ECCV 2016 workshops (pp.\u00a0777\u2013823). Berlin: Springer."},{"key":"2_CR70","first-page":"205","volume-title":"European conference on computer vision","author":"G. Bhat","year":"2020","unstructured":"Bhat, G., Danelljan, M., Van Gool, L., & Timofte, R. (2020). Know your surroundings: exploiting scene information for object tracking. In European conference on computer vision (pp.\u00a0205\u2013221). Berlin: Springer."},{"key":"2_CR71","first-page":"4670","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"K. Dai","year":"2019","unstructured":"Dai, K., Wang, D., Lu, H., Sun, C., & Li, J. (2019). Visual tracking via adaptive spatially-regularized correlation filters. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a04670\u20134679). Los Alamitos: IEEE."},{"doi-asserted-by":"crossref","unstructured":"Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, R., & Yang, M.-H. (2018). Vital: visual tracking via adversarial learning. arXiv preprint. arXiv:1804.04273.","key":"2_CR72","DOI":"10.1109\/CVPR.2018.00937"},{"doi-asserted-by":"crossref","unstructured":"Park, E., & Berg, A. C. (2018). Meta-tracker: fast and robust online adaptation for visual object trackers. arXiv preprint. arXiv:1801.03049.","key":"2_CR73","DOI":"10.1007\/978-3-030-01219-9_35"},{"key":"2_CR74","first-page":"2555","volume-title":"IEEE international conference on computer vision","author":"Y. Song","year":"2017","unstructured":"Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R., & Yang, M.-H. (2017). Crest: convolutional residual learning for visual tracking. In IEEE international conference on computer vision (pp.\u00a02555\u20132564). Los Alamitos: IEEE."},{"key":"2_CR75","first-page":"4807","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"J. Choi","year":"2017","unstructured":"Choi, J., Chang, H. J., Yun, S., Fischer, T., Demiris, Y., & Choi, J. Y. (2017). Attentional correlation filter network for adaptive visual tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a04807\u20134816). Los Alamitos: IEEE."},{"key":"2_CR76","first-page":"850","volume-title":"European conference on computer vision","author":"L. Bertinetto","year":"2016","unstructured":"Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. S. (2016). Fully-convolutional Siamese networks for object tracking. In European conference on computer vision (pp.\u00a0850\u2013865). Berlin: Springer."},{"issue":"5","key":"2_CR77","doi-asserted-by":"publisher","first-page":"2526","DOI":"10.1109\/TIP.2018.2806280","volume":"27","author":"E. Gundogdu","year":"2018","unstructured":"Gundogdu, E., & Alatan, A. A. (2018). Good features to correlate for visual tracking. IEEE Transactions on Image Processing, 27(5), 2526\u20132540.","journal-title":"IEEE Transactions on Image Processing"},{"doi-asserted-by":"crossref","unstructured":"Bhat, G., Johnander, J., Danelljan, M., Khan, F. S., & Felsberg, M. (2018). Unveiling the power of deep tracking. arXiv preprint. arXiv:1804.06833.","key":"2_CR78","DOI":"10.1007\/978-3-030-01216-8_30"},{"key":"2_CR79","first-page":"8101","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"Q. Shen","year":"2022","unstructured":"Shen, Q., Qiao, L., Guo, J., Li, P., Li, X., Li, B., Feng, W., Gan, W., Wu, W., & Ouyang, W. (2022). Unsupervised learning of accurate Siamese tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a08101\u20138110). Los Alamitos: IEEE."},{"key":"2_CR80","first-page":"6288","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","author":"G. Wang","year":"2020","unstructured":"Wang, G., Luo, C., Sun, X., Xiong, Z., & Zeng, W. (2020). Tracking by instance detection: a meta-learning approach. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.\u00a06288\u20136297). Los Alamitos: IEEE."}],"container-title":["Visual Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s44267-023-00002-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s44267-023-00002-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s44267-023-00002-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T23:05:48Z","timestamp":1729379148000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s44267-023-00002-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,8]]},"references-count":80,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["2"],"URL":"https:\/\/doi.org\/10.1007\/s44267-023-00002-1","relation":{},"ISSN":["2731-9008"],"issn-type":[{"type":"electronic","value":"2731-9008"}],"subject":[],"published":{"date-parts":[[2023,5,8]]},"assertion":[{"value":"1 September 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 December 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 February 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 May 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"4"}}