{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:45:37Z","timestamp":1740149137916,"version":"3.37.3"},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T00:00:00Z","timestamp":1702944000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T00:00:00Z","timestamp":1702944000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100022230","name":"Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University","doi-asserted-by":"publisher","award":["PNURSP2023R387"],"id":[{"id":"10.13039\/501100022230","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Comput Intell Syst"],"abstract":"Abstract<\/jats:title>Arrhythmia is a heart condition that poses a severe threat to life and requires prompt medical attention. One of the challenges in detecting arrhythmias accurately is that incorrect diagnoses can have severe consequences. In light of this, it is critical to develop a solution that is both effective and reliable. In this study, we propose a residual Convolution Neural Network Bidirectional Long Short-Term Memory (DeepResidualBiLSTM) model for classifying Arrhythmia types, which addresses the vanishing gradient problem and captures the relevant features in the signals\u2019 long dependencies. The model is characterized by its simplicity, stability, and ability to extract meaningful features effectively. Using two well-known datasets, the experimental results demonstrate exceptional accuracy, precision, and recall values of approximately 99.4% at the early stage of 20 epoch training. Furthermore, the model demonstrates a remarkable ability to discriminate between Arrhythmia classes under varying thresholds using the ROC curve metric, with a high value, in most cases, of 100% for accurately detecting positive cases.<\/jats:p>","DOI":"10.1007\/s44196-023-00374-8","type":"journal-article","created":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T12:02:29Z","timestamp":1702987349000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Convolution Neural Network Bidirectional Long Short-Term Memory for Heartbeat Arrhythmia Classification"],"prefix":"10.1007","volume":"16","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2413-7074","authenticated-orcid":false,"given":"Rami S.","family":"Alkhawaldeh","sequence":"first","affiliation":[]},{"given":"Bilal","family":"Al-Ahmad","sequence":"additional","affiliation":[]},{"given":"Amel","family":"Ksibi","sequence":"additional","affiliation":[]},{"given":"Nazeeh","family":"Ghatasheh","sequence":"additional","affiliation":[]},{"given":"Evon M.","family":"Abu-Taieh","sequence":"additional","affiliation":[]},{"given":"Ghadah","family":"Aldehim","sequence":"additional","affiliation":[]},{"given":"Manel","family":"Ayadi","sequence":"additional","affiliation":[]},{"given":"Samar M.","family":"Alkhawaldeh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,19]]},"reference":[{"key":"374_CR1","doi-asserted-by":"crossref","unstructured":"Alkhawaldeh, R.S.: Dgr: gender recognition of human speech using one-dimensional conventional neural network. Sci. Program. 2019 (2019)","DOI":"10.1155\/2019\/7213717"},{"key":"374_CR2","doi-asserted-by":"publisher","unstructured":"Alkhawaldeh, R.S., Al-Dabet, S.: Unified framework model for detecting and organizing medical cancerous images in iomt systems. Multimed. Tools Appl. 1\u201328 (2023). https:\/\/doi.org\/10.1007\/s11042-023-16883-9","DOI":"10.1007\/s11042-023-16883-9"},{"issue":"16","key":"374_CR3","doi-asserted-by":"publisher","first-page":"2609","DOI":"10.1049\/iet-com.2018.5430","volume":"13","author":"RS Alkhawaldeh","year":"2019","unstructured":"Alkhawaldeh, R.S., Khawaldeh, S., Pervaiz, U., Alawida, M., Alkhawaldeh, H.: Niml: non-intrusive machine learning-based speech quality prediction on voip networks. IET Commun. 13(16), 2609\u20132616 (2019)","journal-title":"IET Commun."},{"key":"374_CR4","doi-asserted-by":"crossref","unstructured":"Alkhawaldeh, R.S., Alawida, M., Alshdaifat, N.F.F., Alma\u2019aitah, W., Almasri, A.: Ensemble deep transfer learning model for arabic (indian) handwritten digit recognition. Neural Comput. Appl. 1\u201315 (2021)","DOI":"10.1007\/s00521-021-06423-7"},{"key":"374_CR5","doi-asserted-by":"publisher","first-page":"119391","DOI":"10.1016\/j.eswa.2022.119391","volume":"215","author":"A Amelio","year":"2023","unstructured":"Amelio, A., Bonifazi, G., Cauteruccio, F., Corradini, E., Marchetti, M., Ursino, D., Virgili, L.: Representation and compression of residual neural networks through a multilayer network based approach. Expert Syst. Appl. 215, 119391 (2023)","journal-title":"Expert Syst. Appl."},{"key":"374_CR6","doi-asserted-by":"publisher","unstructured":"Arifin, J., Sardjono, T.A., Kusuma, H.: Deep learning-based approaches for ecg signal arrhythmia: A comprehensive review. In: 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 417\u2013421 (2023). https:\/\/doi.org\/10.1109\/ISITIA59021.2023.10221043","DOI":"10.1109\/ISITIA59021.2023.10221043"},{"key":"374_CR7","doi-asserted-by":"publisher","unstructured":"Arora, A., Taneja, A., Hemanth, J.: Heart arrhythmia detection and classification: A comparative study using deep learning models. Iran. J. Sci. Technol. Trans. Elect. Eng. (2023). https:\/\/doi.org\/10.1007\/s40998-023-00633-6","DOI":"10.1007\/s40998-023-00633-6"},{"key":"374_CR8","doi-asserted-by":"crossref","unstructured":"Corrado, C., Roney, C.H., Razeghi, O., Lemus, J.A.S., Coveney, S., Sim, I., Williams, S.E., O\u2019Neill, M.D., Wilkinson, R.D., Clayton, R.H., et al.: Quantifying the impact of shape uncertainty on predicted arrhythmias. Comput. Biol. Med. 106528 (2023)","DOI":"10.1016\/j.compbiomed.2022.106528"},{"key":"374_CR9","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1007\/978-3-031-23062-2_17","volume-title":"Cardiomyopathies","author":"M Dawood","year":"2023","unstructured":"Dawood, M.: Cardiomyopathies, pp. 131\u2013139. Springer International Publishing, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-23062-2_17"},{"issue":"2","key":"374_CR10","doi-asserted-by":"publisher","first-page":"602","DOI":"10.1111\/dom.14854","volume":"25","author":"AM Fawzy","year":"2023","unstructured":"Fawzy, A.M., Rivera-Caravaca, J.M., Underhill, P., Fauchier, L., Lip, G.Y.: Incident heart failure, arrhythmias and cardiovascular outcomes with sodium-glucose cotransporter 2 (sglt2) inhibitor use in patients with diabetes: Insights from a global federated electronic medical record database. Diab. Obes. Met. 25(2), 602\u2013610 (2023)","journal-title":"Diab. Obes. Met."},{"key":"374_CR11","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.procs.2022.12.109","volume":"216","author":"R Febrian","year":"2023","unstructured":"Febrian, R., Halim, B.M., Christina, M., Ramdhan, D., Chowanda, A.: Facial expression recognition using bidirectional lstm-cnn. Proc. Comput. Sci. 216, 39\u201347 (2023)","journal-title":"Proc. Comput. Sci."},{"issue":"3","key":"374_CR12","doi-asserted-by":"publisher","first-page":"868","DOI":"10.1016\/j.bbe.2019.06.001","volume":"39","author":"L Guo","year":"2019","unstructured":"Guo, L., Sim, G., Matuszewski, B.: Inter-patient ecg classification with convolutional and recurrent neural networks. Biocybern. Biomed. Eng. 39(3), 868\u2013879 (2019)","journal-title":"Biocybern. Biomed. Eng."},{"key":"374_CR13","doi-asserted-by":"publisher","first-page":"205520762211027","DOI":"10.1177\/20552076221102766","volume":"8","author":"SU Hassan","year":"2022","unstructured":"Hassan, S.U., Mohd Zahid, M.S., Abdullah, T.A., Husain, K.: Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. Digital Health 8, 20552076221102770 (2022)","journal-title":"Digital Health"},{"issue":"3","key":"374_CR14","doi-asserted-by":"publisher","first-page":"70","DOI":"10.3390\/jimaging8030070","volume":"8","author":"S Jamil","year":"2022","unstructured":"Jamil, S., Rahman, M.: A novel deep-learning-based framework for the classification of cardiac arrhythmia. J. Imaging 8(3), 70 (2022)","journal-title":"J. Imaging"},{"key":"374_CR15","doi-asserted-by":"publisher","unstructured":"Kachuee, M., Fazeli, S., Sarrafzadeh, M.: Ecg heartbeat classification: a deep transferable representation. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 443\u2013444 (2018). https:\/\/doi.org\/10.1109\/ICHI.2018.00092","DOI":"10.1109\/ICHI.2018.00092"},{"key":"374_CR16","first-page":"1","volume":"71","author":"YK Kim","year":"2022","unstructured":"Kim, Y.K., Lee, M., Song, H.S., Lee, S.W.: Automatic cardiac arrhythmia classification using residual network combined with long short-term memory. IEEE Trans. Instrum. Measure. 71, 1\u201317 (2022)","journal-title":"IEEE Trans. Instrum. Measure."},{"issue":"1","key":"374_CR17","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1016\/j.hrthm.2022.09.022","volume":"20","author":"RA Kloner","year":"2023","unstructured":"Kloner, R.A.: Marijuana and electronic cigarettes on cardiac arrhythmias. Heart Rhy. 20(1), 87\u201388 (2023)","journal-title":"Heart Rhy."},{"key":"374_CR18","doi-asserted-by":"publisher","first-page":"106582","DOI":"10.1016\/j.cmpb.2021.106582","volume":"214","author":"Y Li","year":"2022","unstructured":"Li, Y., Qian, R., Li, K.: Inter-patient arrhythmia classification with improved deep residual convolutional neural network. Comput. Methods Prog. Biomed. 214, 106582 (2022)","journal-title":"Comput. Methods Prog. Biomed."},{"key":"374_CR19","doi-asserted-by":"publisher","first-page":"103228","DOI":"10.1016\/j.bspc.2021.103228","volume":"71","author":"P Liu","year":"2022","unstructured":"Liu, P., Sun, X., Han, Y., He, Z., Zhang, W., Wu, C.: Arrhythmia classification of lstm autoencoder based on time series anomaly detection. Biomed. Signal Process. Control 71, 103228 (2022)","journal-title":"Biomed. Signal Process. Control"},{"issue":"9","key":"374_CR20","doi-asserted-by":"publisher","first-page":"3283","DOI":"10.3390\/s22093283","volume":"22","author":"T Liu","year":"2022","unstructured":"Liu, T., Si, Y., Yang, W., Huang, J., Yu, Y., Zhang, G., Zhou, R.: Inter-patient congestive heart failure detection using ecg-convolution-vision transformer network. Sensors 22(9), 3283 (2022)","journal-title":"Sensors"},{"issue":"2","key":"374_CR21","doi-asserted-by":"publisher","first-page":"2053","DOI":"10.1007\/s11042-022-13320-1","volume":"82","author":"MM Misgar","year":"2023","unstructured":"Misgar, M.M., Mushtaq, F., Khurana, S.S., Kumar, M.: Recognition of offline handwritten urdu characters using rnn and lstm models. Multimed. Tools Appl. 82(2), 2053\u20132076 (2023)","journal-title":"Multimed. Tools Appl."},{"key":"374_CR22","doi-asserted-by":"publisher","first-page":"102570","DOI":"10.1016\/j.artmed.2023.102570","volume":"142","author":"J Park","year":"2023","unstructured":"Park, J., Lee, K., Park, N., You, S.C., Ko, J.: Self-attention lstm-fcn model for arrhythmia classification and uncertainty assessment. Artif. Intell. Med. 142, 102570 (2023). https:\/\/doi.org\/10.1016\/j.artmed.2023.102570","journal-title":"Artif. Intell. Med."},{"issue":"21","key":"374_CR23","doi-asserted-by":"publisher","first-page":"3427","DOI":"10.3390\/electronics11213427","volume":"11","author":"J Qin","year":"2022","unstructured":"Qin, J., Gao, F., Wang, Z., Liu, L., Ji, C.: Arrhythmia detection based on wgan-gp and se-resnet1d. Electronics 11(21), 3427 (2022)","journal-title":"Electronics"},{"issue":"1","key":"374_CR24","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1016\/j.bbe.2022.02.006","volume":"42","author":"J Rahul","year":"2022","unstructured":"Rahul, J., Sharma, L.D.: Automatic cardiac arrhythmia classification based on hybrid 1-d cnn and bi-lstm model. Biocybern. Biomed. Eng. 42(1), 312\u2013324 (2022)","journal-title":"Biocybern. Biomed. Eng."},{"key":"374_CR25","unstructured":"Saito, K.: Potential and future challenges for cheyne-stokes breathing telemonitoring from continuous positive airway pressure devices. J. Clin. Sleep Med. JCSM 10456 (2023)"},{"key":"374_CR26","doi-asserted-by":"crossref","unstructured":"Shaik, T., Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., Acharya, U.R.: Remote patient monitoring using artificial intelligence: current state, applications, and challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p. e1485 (2023)","DOI":"10.1002\/widm.1485"},{"issue":"1","key":"374_CR27","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1002\/tre.898","volume":"14","author":"T Syed","year":"2023","unstructured":"Syed, T., Patel, N.R.: How can atrial fibrillation be detected and treated effectively? Trends Urol. Men Health 14(1), 5\u201310 (2023)","journal-title":"Trends Urol. Men Health"},{"key":"374_CR28","doi-asserted-by":"crossref","unstructured":"Ullah, W., Siddique, I., Zulqarnain, R.M., Alam, M.M., Ahmad, I., Raza, U.A.: Classification of arrhythmia in heartbeat detection using deep learning. Comput. Intell. Neurosci. 2021 (2021)","DOI":"10.1155\/2021\/2195922"},{"key":"374_CR29","doi-asserted-by":"publisher","first-page":"104206","DOI":"10.1016\/j.bspc.2022.104206","volume":"79","author":"Y Wang","year":"2023","unstructured":"Wang, Y., Yang, G., Li, S., Li, Y., He, L., Liu, D.: Arrhythmia classification algorithm based on multi-head self-attention mechanism. Biomed. Signal Process. Control 79, 104206 (2023). https:\/\/doi.org\/10.1016\/j.bspc.2022.104206","journal-title":"Biomed. Signal Process. Control"},{"key":"374_CR30","doi-asserted-by":"publisher","first-page":"125380","DOI":"10.1109\/ACCESS.2020.3006707","volume":"8","author":"X Xu","year":"2020","unstructured":"Xu, X., Jeong, S., Li, J.: Interpretation of electrocardiogram (ecg) rhythm by combined cnn and bilstm. IEEE Access 8, 125380\u2013125388 (2020). https:\/\/doi.org\/10.1109\/ACCESS.2020.3006707","journal-title":"IEEE Access"},{"key":"374_CR31","doi-asserted-by":"publisher","unstructured":"Yesudasu, A.R.R., Revathi, N.N.S.P., Durga Prasad, P.R.L., Pujitha. K., Prabha, K.V.R.: A review on analysis of cardiac arrhythmia from heart beat classification. In: 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), pp. 1464\u20131471 (2023). https:\/\/doi.org\/10.1109\/ICEARS56392.2023.10085295","DOI":"10.1109\/ICEARS56392.2023.10085295"}],"updated-by":[{"updated":{"date-parts":[[2024,2,21]],"date-time":"2024-02-21T00:00:00Z","timestamp":1708473600000},"DOI":"10.1007\/s44196-024-00437-4","type":"correction","source":"publisher","label":"Correction"}],"container-title":["International Journal of Computational Intelligence Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s44196-023-00374-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s44196-023-00374-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s44196-023-00374-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,22]],"date-time":"2024-02-22T14:05:39Z","timestamp":1708610739000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s44196-023-00374-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,19]]},"references-count":31,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["374"],"URL":"https:\/\/doi.org\/10.1007\/s44196-023-00374-8","relation":{},"ISSN":["1875-6883"],"issn-type":[{"type":"electronic","value":"1875-6883"}],"subject":[],"published":{"date-parts":[[2023,12,19]]},"assertion":[{"value":"20 September 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 November 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 December 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 February 2024","order":4,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":5,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s44196-024-00437-4","URL":"https:\/\/doi.org\/10.1007\/s44196-024-00437-4","order":7,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}}],"article-number":"197"}}