{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,22]],"date-time":"2025-02-22T00:24:07Z","timestamp":1740183847402,"version":"3.37.3"},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T00:00:00Z","timestamp":1666569600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T00:00:00Z","timestamp":1666569600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/100006497","name":"Office of Research, Drexel University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006497","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["AI Ethics"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1007\/s43681-022-00227-8","type":"journal-article","created":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T14:06:47Z","timestamp":1666620407000},"page":"1193-1201","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Turing test-inspired method for analysis of biases prevalent in artificial intelligence-based medical imaging"],"prefix":"10.1007","volume":"3","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-6214-1464","authenticated-orcid":false,"given":"Satvik","family":"Tripathi","sequence":"first","affiliation":[]},{"given":"Alisha","family":"Augustin","sequence":"additional","affiliation":[]},{"given":"Farouk","family":"Dako","sequence":"additional","affiliation":[]},{"given":"Edward","family":"Kim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,24]]},"reference":[{"key":"227_CR1","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1016\/j.metabol.2017.01.011","volume":"69","author":"P Hamet","year":"2017","unstructured":"Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, 36\u201340 (2017)","journal-title":"Metabolism"},{"issue":"5","key":"227_CR2","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1308\/147870804290","volume":"86","author":"A Ramesh","year":"2004","unstructured":"Ramesh, A., Kambhampati, C., Monson, J.R., Drew, P.: Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)","journal-title":"Ann. R. Coll. Surg. Engl."},{"issue":"8","key":"227_CR3","doi-asserted-by":"publisher","first-page":"500","DOI":"10.1038\/s41568-018-0016-5","volume":"18","author":"A Hosny","year":"2018","unstructured":"Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.: Artificial intelligence in radiology. Nat. Rev. Cancer 18(8), 500\u2013510 (2018)","journal-title":"Nat. Rev. Cancer"},{"key":"227_CR4","doi-asserted-by":"crossref","unstructured":"Tripathi, S.: Artificial intelligence: a brief review. In: Analyzing Future Applications of AI, Sensors, and Robotics in Society, pp. 1\u201316 (2021)","DOI":"10.4018\/978-1-7998-3499-1.ch001"},{"issue":"4","key":"227_CR5","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1023\/A:1011288000451","volume":"10","author":"A Pinar Saygin","year":"2000","unstructured":"Pinar Saygin, A., Cicekli, I., Akman, V.: Turing test: 50 years later. Mind. Mach. 10(4), 463\u2013518 (2000)","journal-title":"Mind. Mach."},{"key":"227_CR6","volume-title":"Computing Machinery and Intelligence. Parsing the Turing Test","author":"AM Turing","year":"2009","unstructured":"Turing, A.M.: Computing Machinery and Intelligence. Parsing the Turing Test. Springer, Berlin (2009)"},{"issue":"236","key":"227_CR7","doi-asserted-by":"publisher","first-page":"433","DOI":"10.1093\/mind\/LIX.236.433","volume":"59","author":"AM Turing","year":"1950","unstructured":"Turing, A.M.: Mind. Mind 59(236), 433\u2013460 (1950)","journal-title":"Mind"},{"issue":"4","key":"227_CR8","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/BF00372497","volume":"30","author":"JH Moor","year":"1976","unstructured":"Moor, J.H.: An analysis of the Turing test. Philos. Stud. 30(4), 249\u2013257 (1976)","journal-title":"Philos. Stud."},{"issue":"1","key":"227_CR9","first-page":"3","volume":"37","author":"G Marcus","year":"2016","unstructured":"Marcus, G., Rossi, F., Veloso, M.: Beyond the Turing test. AI Magz. 37(1), 3\u20134 (2016)","journal-title":"AI Magz."},{"key":"227_CR10","unstructured":"Oppy, G., Dowe, D.: The Turing test (2003)"},{"key":"227_CR11","doi-asserted-by":"publisher","unstructured":"Tripathi, S., Augustin, A., Kim, E.: Longitudinal neuroimaging data classification for early detection of Alzheimer\u2019s disease using ensemble learning models. https:\/\/doi.org\/10.36227\/techrxiv.19295120.v1 (2022)","DOI":"10.36227\/techrxiv.19295120.v1"},{"key":"227_CR12","unstructured":"Tripathi, S.: Early diagnostic prediction of covid-19 using gradient-boosting machine model. arXiv preprint arXiv:2110.09436 (2021)"},{"issue":"10","key":"227_CR13","doi-asserted-by":"publisher","first-page":"719","DOI":"10.1038\/s41551-018-0305-z","volume":"2","author":"K-H Yu","year":"2018","unstructured":"Yu, K.-H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719\u2013731 (2018)","journal-title":"Nat. Biomed. Eng."},{"key":"227_CR14","doi-asserted-by":"crossref","unstructured":"Wegner, L., Houben, Y., Ziefle, M., Calero\u00a0Valdez, A.: Fairness and the need for regulation of AI in medicine, teaching, and recruiting. In: International Conference on Human\u2013Computer Interaction, pp. 277\u2013295. Springer (2021)","DOI":"10.1007\/978-3-030-77820-0_21"},{"key":"227_CR15","unstructured":"Dori-Hacohen, S., Montenegro, R., Murai, F., Hale, S.A., Sung, K., Blain, M., Edwards-Johnson, J.: Fairness via AI: bias reduction in medical information. arXiv preprint arXiv:2109.02202 (2021)"},{"issue":"3","key":"227_CR16","doi-asserted-by":"publisher","first-page":"326","DOI":"10.1093\/jamiaopen\/ooaa033","volume":"3","author":"Y Park","year":"2020","unstructured":"Park, Y., Jackson, G.P., Foreman, M.A., Gruen, D., Hu, J., Das, A.K.: Evaluating artificial intelligence in medicine: phases of clinical research. JAMIA Open 3(3), 326\u2013331 (2020)","journal-title":"JAMIA Open"},{"key":"227_CR17","doi-asserted-by":"crossref","unstructured":"Tripathi, S., Musiolik, T.H.: Fairness and ethics in artificial intelligence-based medical imaging. In: Ethical Implications of Reshaping Healthcare With Emerging Technologies, pp. 71\u201385. IGI Global (2022)","DOI":"10.4018\/978-1-7998-7888-9.ch004"},{"key":"227_CR18","doi-asserted-by":"publisher","DOI":"10.4324\/9780429052071","volume-title":"Artificial Intelligence in Medicine","author":"P Szolovits","year":"2019","unstructured":"Szolovits, P.: Artificial Intelligence in Medicine. Routledge, New York (2019)"},{"issue":"13","key":"227_CR19","doi-asserted-by":"publisher","first-page":"2722","DOI":"10.1007\/s00259-019-04382-9","volume":"46","author":"A Holzinger","year":"2019","unstructured":"Holzinger, A., Haibe-Kains, B., Jurisica, I.: Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data. Eur. J. Nucl. Med. Mol. Imaging 46(13), 2722\u20132730 (2019)","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"issue":"11","key":"227_CR20","doi-asserted-by":"publisher","first-page":"501","DOI":"10.1038\/s42256-019-0114-4","volume":"1","author":"B Mittelstadt","year":"2019","unstructured":"Mittelstadt, B.: Principles alone cannot guarantee ethical AI. Nat. Mach. Intell. 1(11), 501\u2013507 (2019)","journal-title":"Nat. Mach. Intell."},{"key":"227_CR21","unstructured":"Fihn, S., Saria, S., Mendon\u00e7a, E., et al.: Deploying AI in clinical settings. In: Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril, 145 (2019)"},{"key":"227_CR22","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.ejmp.2021.02.024","volume":"83","author":"Y Balagurunathan","year":"2021","unstructured":"Balagurunathan, Y., Mitchell, R., El Naqa, I.: Requirements and reliability of AI in the medical context. Phys. Med. 83, 72\u201378 (2021)","journal-title":"Phys. Med."},{"issue":"1","key":"227_CR23","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1016\/j.artmed.2008.07.017","volume":"46","author":"VL Patel","year":"2009","unstructured":"Patel, V.L., Shortliffe, E.H., Stefanelli, M., Szolovits, P., Berthold, M.R., Bellazzi, R., Abu-Hanna, A.: The coming of age of artificial intelligence in medicine. Artif. Intell. Med. 46(1), 5\u201317 (2009)","journal-title":"Artif. Intell. Med."},{"issue":"6","key":"227_CR24","doi-asserted-by":"publisher","first-page":"15154","DOI":"10.2196\/15154","volume":"22","author":"O Asan","year":"2020","unstructured":"Asan, O., Bayrak, A.E., Choudhury, A., et al.: Artificial intelligence and human trust in healthcare: focus on clinicians. J. Med. Internet Res. 22(6), 15154 (2020)","journal-title":"J. Med. Internet Res."},{"issue":"5","key":"227_CR25","doi-asserted-by":"publisher","first-page":"745","DOI":"10.1007\/s13244-018-0645-y","volume":"9","author":"F Pesapane","year":"2018","unstructured":"Pesapane, F., Volont\u00e9, C., Codari, M., Sardanelli, F.: Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging 9(5), 745\u2013753 (2018)","journal-title":"Insights Imaging"},{"issue":"4","key":"227_CR26","doi-asserted-by":"publisher","first-page":"231","DOI":"10.3390\/diagnostics10040231","volume":"10","author":"AP Brady","year":"2020","unstructured":"Brady, A.P., Neri, E.: Artificial intelligence in radiology-ethical considerations. Diagnostics 10(4), 231 (2020)","journal-title":"Diagnostics"},{"issue":"6","key":"227_CR27","doi-asserted-by":"publisher","first-page":"3576","DOI":"10.1007\/s00330-020-06672-5","volume":"30","author":"MP Recht","year":"2020","unstructured":"Recht, M.P., Dewey, M., Dreyer, K., Langlotz, C., Niessen, W., Prainsack, B., Smith, J.J.: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol. 30(6), 3576\u20133584 (2020)","journal-title":"Eur. Radiol."},{"issue":"1","key":"227_CR28","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1016\/j.acra.2019.04.024","volume":"27","author":"MA Mazurowski","year":"2020","unstructured":"Mazurowski, M.A.: Artificial intelligence in radiology: some ethical considerations for radiologists and algorithm developers. Acad. Radiol. 27(1), 127\u2013129 (2020)","journal-title":"Acad. Radiol."},{"key":"227_CR29","doi-asserted-by":"crossref","unstructured":"Banja, J.: AI hype and radiology: a plea for realism and accuracy. Radiol. Artif. Intell. 2(4) (2020)","DOI":"10.1148\/ryai.2020190223"},{"issue":"1","key":"227_CR30","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1148\/radiol.2021203957","volume":"299","author":"EB Tsai","year":"2021","unstructured":"Tsai, E.B., Simpson, S., Lungren, M.P., Hershman, M., Roshkovan, L., Colak, E., Erickson, B.J., Shih, G., Stein, A., Kalpathy-Cramer, J., et al.: The rsna international covid-19 open radiology database (ricord). Radiology 299(1), 204\u2013213 (2021)","journal-title":"Radiology"},{"key":"227_CR31","doi-asserted-by":"publisher","unstructured":"Tsai, E., Simpson, S., Lungren, M., Hershman, M., Roshkovan, L., Colak, E., Erickson, B., Shih, G., Stein, A., Kalpathy-Cramer, J., et al.: data from medical imaging data resource center (midrc)-rsna international covid radiology database (ricord) release 1\u2014chest X-ray, covid+(midrc-ricord-1c). The Cancer Imaging Archive. https:\/\/doi.org\/10.7937\/91ah-v663 (2021)","DOI":"10.7937\/91ah-v663"},{"key":"227_CR32","doi-asserted-by":"publisher","unstructured":"Jun, M., Cheng, G., Yixin, W., Xingle, A., Jiantao, G., Ziqi, Y., Minqing, Z., Xin, L., Xueyuan, D., Shucheng, C., Hao, W., Sen, M., Xiaoyu, Y., Ziwei, N., Chen, L., Lu, T., Yuntao, Z., Qiongjie, Z., Guoqiang, D., Jian, H.: COVID-19 CT Lung and Infection Segmentation Dataset. https:\/\/doi.org\/10.5281\/zenodo.3757476","DOI":"10.5281\/zenodo.3757476"},{"key":"227_CR33","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234\u2013241. Springer (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"227_CR34","doi-asserted-by":"crossref","unstructured":"Zhou, Z., Rahman\u00a0Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3\u201311. Springer (2018)","DOI":"10.1007\/978-3-030-00889-5_1"},{"key":"227_CR35","doi-asserted-by":"crossref","unstructured":"Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.-W., Wu, J.: Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055\u20131059. IEEE (2020)","DOI":"10.1109\/ICASSP40776.2020.9053405"},{"key":"227_CR36","unstructured":"Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)"},{"issue":"3","key":"227_CR37","doi-asserted-by":"publisher","first-page":"1310","DOI":"10.12928\/telkomnika.v18i3.14753","volume":"18","author":"AA Pravitasari","year":"2020","unstructured":"Pravitasari, A.A., Iriawan, N., Almuhayar, M., Azmi, T., Fithriasari, K., Purnami, S.W., Ferriastuti, W., et al.: Unet-vgg16 with transfer learning for MRI-based brain tumor segmentation. Telkomnika 18(3), 1310\u20131318 (2020)","journal-title":"Telkomnika"},{"issue":"3","key":"227_CR38","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1007\/s10472-017-9564-8","volume":"81","author":"O Caelen","year":"2017","unstructured":"Caelen, O.: A Bayesian interpretation of the confusion matrix. Ann. Math. Artif. Intell. 81(3), 429\u2013450 (2017)","journal-title":"Ann. Math. Artif. Intell."},{"key":"227_CR39","unstructured":"Vought, R.T.: Re: Guidance For Regulation of Artificial Intelligence Applications (2020)"},{"issue":"9","key":"227_CR40","doi-asserted-by":"publisher","first-page":"1309","DOI":"10.1016\/j.jacr.2019.05.036","volume":"16","author":"DL Rubin","year":"2019","unstructured":"Rubin, D.L.: Artificial intelligence in imaging: the radiologist\u2019s role. J. Am. Coll. Radiol. 16(9), 1309\u20131317 (2019)","journal-title":"J. Am. Coll. Radiol."},{"issue":"9","key":"227_CR41","doi-asserted-by":"publisher","first-page":"1550","DOI":"10.1007\/s00330-004-2361-x","volume":"14","author":"R Meuli","year":"2004","unstructured":"Meuli, R., Hwu, Y., Je, J.H., Margaritondo, G.: Synchrotron radiation in radiology: radiology techniques based on synchrotron sources. Eur. Radiol. 14(9), 1550\u20131560 (2004)","journal-title":"Eur. Radiol."},{"issue":"24","key":"227_CR42","doi-asserted-by":"publisher","first-page":"2273","DOI":"10.1002\/sim.4780122405","volume":"12","author":"HC Van Houwelingen","year":"1993","unstructured":"Van Houwelingen, H.C., Zwinderman, K.H., Stijnen, T.: A bivariate approach to meta-analysis. Stat. Med. 12(24), 2273\u20132284 (1993)","journal-title":"Stat. Med."}],"container-title":["AI and Ethics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s43681-022-00227-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s43681-022-00227-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s43681-022-00227-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,30]],"date-time":"2023-10-30T12:16:48Z","timestamp":1698668208000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s43681-022-00227-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,24]]},"references-count":42,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,11]]}},"alternative-id":["227"],"URL":"https:\/\/doi.org\/10.1007\/s43681-022-00227-8","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/2022.05.22.493000","asserted-by":"object"}]},"ISSN":["2730-5953","2730-5961"],"issn-type":[{"type":"print","value":"2730-5953"},{"type":"electronic","value":"2730-5961"}],"subject":[],"published":{"date-parts":[[2022,10,24]]},"assertion":[{"value":"7 June 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 October 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}