{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T05:50:13Z","timestamp":1725083413202},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T00:00:00Z","timestamp":1716768000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T00:00:00Z","timestamp":1716768000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/100009392","name":"Prince Sattam bin Abdulaziz University","doi-asserted-by":"publisher","award":["PSAU\/2024\/R\/1445"],"id":[{"id":"10.13039\/100009392","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"DOI":"10.1007\/s42979-024-02939-6","type":"journal-article","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T06:01:59Z","timestamp":1716789719000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Design of a High-Efficiency Temporal Engine for Real-Time Spatial Satellite Image Classification Using Augmented Incremental Transfer Learning for Crop Analysis"],"prefix":"10.1007","volume":"5","author":[{"given":"Akshay Pramodrao","family":"Dhande","sequence":"first","affiliation":[]},{"given":"Rahul","family":"Malik","sequence":"additional","affiliation":[]},{"given":"Dipen","family":"Saini","sequence":"additional","affiliation":[]},{"given":"Rachit","family":"Garg","sequence":"additional","affiliation":[]},{"given":"Sudan","family":"Jha","sequence":"additional","affiliation":[]},{"given":"Jabeen","family":"Nazeer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3198-7974","authenticated-orcid":false,"given":"Sultan","family":"Ahmad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,27]]},"reference":[{"issue":"7","key":"2939_CR1","doi-asserted-by":"publisher","first-page":"2196","DOI":"10.1109\/JSTARS.2019.2921437","volume":"12","author":"R Luciani","year":"2019","unstructured":"Luciani R, Laneve G, JahJah M. Agricultural monitoring, an automatic procedure for crop mapping and yield estimation: the great rift valley of Kenya case. IEEE J Sel Top Appl Earth Observ Remote Sens. 2019;12(7):2196\u2013208. https:\/\/doi.org\/10.1109\/JSTARS.2019.2921437.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"issue":"3","key":"2939_CR2","doi-asserted-by":"publisher","first-page":"572","DOI":"10.1109\/TBDATA.2019.2940237","volume":"6","author":"A Shelestov","year":"2020","unstructured":"Shelestov A, et al. Cloud approach to automated crop classification using sentinel-1 imagery. IEEE Trans Big Data. 2020;6(3):572\u201382. https:\/\/doi.org\/10.1109\/TBDATA.2019.2940237.","journal-title":"IEEE Trans Big Data"},{"issue":"19","key":"2939_CR3","doi-asserted-by":"publisher","first-page":"2522","DOI":"10.3390\/math9192522","volume":"9","author":"HS Arri","year":"2021","unstructured":"Arri HS, Ramandeep S, Sudan J, Deepak P, Gyanendra PJ, Ill CD. Optimized task group aggregation-based overflow handling on fog computing environment using neural computing. Mathematics. 2021;9(19):2522. https:\/\/doi.org\/10.3390\/math9192522.","journal-title":"Mathematics"},{"key":"2939_CR4","doi-asserted-by":"publisher","first-page":"4607","DOI":"10.1109\/JSTARS.2020.3016135","volume":"13","author":"J Jiang","year":"2020","unstructured":"Jiang J, et al. HISTIF: a new spatiotemporal image fusion method for high-resolution monitoring of crops at the subfield level. IEEE J Sel Top Appl Earth Observ Remote Sens. 2020;13:4607\u201326. https:\/\/doi.org\/10.1109\/JSTARS.2020.3016135.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR5","doi-asserted-by":"publisher","first-page":"847","DOI":"10.1109\/JSTARS.2020.2971763","volume":"13","author":"Z Li","year":"2020","unstructured":"Li Z, Chen G, Zhang T. A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images. IEEE J Sel Top Appl Earth Observ Remote Sens. 2020;13:847\u201358. https:\/\/doi.org\/10.1109\/JSTARS.2020.2971763.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR6","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1109\/JSTARS.2020.3038152","volume":"14","author":"M Rousi","year":"2021","unstructured":"Rousi M, et al. Semantically enriched crop type classification and linked earth observation data to support the common agricultural policy monitoring. IEEE J Sel Top Appl Earth Observ Remote Sens. 2021;14:529\u201352. https:\/\/doi.org\/10.1109\/JSTARS.2020.3038152.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR7","doi-asserted-by":"publisher","first-page":"2200","DOI":"10.1109\/JSTARS.2020.2990104","volume":"13","author":"Z Sun","year":"2020","unstructured":"Sun Z, Di L, Fang H, Burgess A. Deep learning classification for crop types in North Dakota. IEEE J Sel Top Appl Earth Observ Remote Sens. 2020;13:2200\u201313. https:\/\/doi.org\/10.1109\/JSTARS.2020.2990104.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"issue":"5","key":"2939_CR8","doi-asserted-by":"publisher","first-page":"755","DOI":"10.1109\/LGRS.2019.2935830","volume":"17","author":"J Quiros Vargas","year":"2020","unstructured":"Quiros Vargas J, Khot LR, Peters RT, Chandel AK, Molaei B. Low orbiting satellite and small UAS-based high-resolution imagery data to quantify crop lodging: a case study in irrigated spearmint. IEEE Geosci Remote Sens Lett. 2020;17(5):755\u20139. https:\/\/doi.org\/10.1109\/LGRS.2019.2935830.","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"2939_CR9","doi-asserted-by":"publisher","first-page":"4070","DOI":"10.1109\/JSTARS.2020.3008096","volume":"13","author":"A Mestre-Quereda","year":"2020","unstructured":"Mestre-Quereda A, Lopez-Sanchez JM, Vicente-Guijalba F, Jacob AW, Engdahl ME. Time-series of sentinel-1 interferometric coherence and backscatter for crop-type mapping. IEEE J Sel Top Appl Earth Observ Remote Sens. 2020;13:4070\u201384. https:\/\/doi.org\/10.1109\/JSTARS.2020.3008096.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR10","doi-asserted-by":"publisher","first-page":"103020","DOI":"10.1109\/ACCESS.2020.2998079","volume":"8","author":"W Khan","year":"2020","unstructured":"Khan W, et al. On the performance of temporal stacking and vegetation indices for detection and estimation of tobacco crop. IEEE Access. 2020;8:103020\u201333. https:\/\/doi.org\/10.1109\/ACCESS.2020.2998079.","journal-title":"IEEE Access"},{"key":"2939_CR11","doi-asserted-by":"publisher","first-page":"226297","DOI":"10.1109\/ACCESS.2020.3045443","volume":"8","author":"PW Khan","year":"2020","unstructured":"Khan PW, Byun Y-C, Latif MA. Clifford geometric algebra-based approach for 3d modeling of agricultural images acquired by UAVs. IEEE Access. 2020;8:226297\u2013308. https:\/\/doi.org\/10.1109\/ACCESS.2020.3045443.","journal-title":"IEEE Access"},{"key":"2939_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LGRS.2021.3095505","volume":"19","author":"P Tang","year":"2022","unstructured":"Tang P, Du P, Xia J, Zhang P, Zhang W. Channel attention-based temporal convolutional network for satellite image time series classification. IEEE Geosci Remote Sens Lett. 2022;19:1\u20135. https:\/\/doi.org\/10.1109\/LGRS.2021.3095505. (Art no. 8016505).","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"2939_CR13","doi-asserted-by":"publisher","first-page":"138179","DOI":"10.1109\/ACCESS.2020.3012125","volume":"8","author":"MH Asad","year":"2020","unstructured":"Asad MH, Bais A. Crop and weed leaf area index mapping using multi-source remote and proximal sensing. IEEE Access. 2020;8:138179\u201390. https:\/\/doi.org\/10.1109\/ACCESS.2020.3012125.","journal-title":"IEEE Access"},{"issue":"3","key":"2939_CR14","doi-asserted-by":"publisher","first-page":"2150","DOI":"10.1109\/TGRS.2019.2953652","volume":"58","author":"YT Solano-Correa","year":"2020","unstructured":"Solano-Correa YT, Bovolo F, Bruzzone L, Fern\u00e1ndez-Prieto D. A method for the analysis of small crop fields in sentinel-2 dense time series. IEEE Trans Geosci Remote Sens. 2020;58(3):2150\u201364. https:\/\/doi.org\/10.1109\/TGRS.2019.2953652.","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"2939_CR15","doi-asserted-by":"publisher","first-page":"7017","DOI":"10.1109\/JSTARS.2021.3094973","volume":"14","author":"S Liu","year":"2021","unstructured":"Liu S, Zhou Z, Ding H, Zhong Y, Shi Q. Crop mapping using sentinel full-year dual-polarized SAR data and a CPU-optimized convolutional neural network with two sampling strategies. IEEE J Sel Top Appl Earth Observ Remote Sens. 2021;14:7017\u201331. https:\/\/doi.org\/10.1109\/JSTARS.2021.3094973.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR16","doi-asserted-by":"publisher","first-page":"1134","DOI":"10.1109\/JSTARS.2020.2973602","volume":"13","author":"MMG de Macedo","year":"2020","unstructured":"de Macedo MMG, Mattos AB, Oliveira DAB. Generalization of convolutional LSTM models for crop area estimation. IEEE J Sel Top Appl Earth Observ Remote Sens. 2020;13:1134\u201342. https:\/\/doi.org\/10.1109\/JSTARS.2020.2973602.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR17","doi-asserted-by":"publisher","first-page":"12361","DOI":"10.1109\/JSTARS.2021.3130186","volume":"14","author":"C Silva-Perez","year":"2021","unstructured":"Silva-Perez C, Marino A, Lopez-Sanchez JM, Cameron I. Multitemporal polarimetric SAR change detection for crop monitoring and crop type classification. IEEE J Sel Top Appl Earth Observ Remote Sens. 2021;14:12361\u201374. https:\/\/doi.org\/10.1109\/JSTARS.2021.3130186.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2021.3113014","volume":"60","author":"S Yang","year":"2022","unstructured":"Yang S, Gu L, Li X, Gao F, Jiang T. Fully automated classification method for crops based on spatiotemporal deep-learning fusion technology. IEEE Trans Geosci Remote Sens. 2022;60:1\u201316. https:\/\/doi.org\/10.1109\/TGRS.2021.3113014. (Art no. 5405016).","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"11","key":"2939_CR19","doi-asserted-by":"publisher","first-page":"7589","DOI":"10.1109\/TGRS.2020.2981671","volume":"58","author":"H-W Jo","year":"2020","unstructured":"Jo H-W, et al. Deep learning applications on multitemporal SAR (Sentinel-1) image classification using confined labeled data: the case of detecting rice paddy in South Korea. IEEE Trans Geosci Remote Sens. 2020;58(11):7589\u2013601. https:\/\/doi.org\/10.1109\/TGRS.2020.2981671.","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"11","key":"2939_CR20","doi-asserted-by":"publisher","first-page":"4606","DOI":"10.1109\/JSTARS.2019.2950406","volume":"12","author":"T Lampert","year":"2019","unstructured":"Lampert T, Lafabregue B, Dao T-B-H, Serrette N, Vrain C, Gan\u00e7arski P. Constrained distance-based clustering for satellite image time-series. IEEE J Sel Top Appl Earth Observ Remote Sens. 2019;12(11):4606\u201321. https:\/\/doi.org\/10.1109\/JSTARS.2019.2950406.","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"key":"2939_CR21","doi-asserted-by":"publisher","first-page":"47781","DOI":"10.1109\/ACCESS.2023.3273529","volume":"11","author":"D Saini","year":"2023","unstructured":"Saini D, et al. MBAHIL: design of a multimodal hybrid bioinspired model for augmentation of hyperspectral imagery via iterative learning for continuous efficiency enhancements. IEEE Access. 2023;11:47781\u201393. https:\/\/doi.org\/10.1109\/ACCESS.2023.3273529.","journal-title":"IEEE Access"},{"key":"2939_CR22","doi-asserted-by":"publisher","unstructured":"Sawant S, Mohite J, Sakkan M, Pappula S (2019) Near real time crop loss estimation using remote sensing observations. In: 2019 8th international conference on agro-geoinformatics (agro-geoinformatics), pp 1\u20135. https:\/\/doi.org\/10.1109\/Agro-Geoinformatics.2019.8820217","DOI":"10.1109\/Agro-Geoinformatics.2019.8820217"},{"key":"2939_CR23","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1109\/EIT.2019.8833724","volume":"2019","author":"S Jones","year":"2019","unstructured":"Jones S, Saniie J. Using deep learning and satellite imagery to assess the damage to civil structures after natural disasters. IEEE Int Conf Electro Inf Technol (EIT). 2019;2019:189\u201393. https:\/\/doi.org\/10.1109\/EIT.2019.8833724.","journal-title":"IEEE Int Conf Electro Inf Technol (EIT)"},{"key":"2939_CR24","doi-asserted-by":"publisher","first-page":"6439","DOI":"10.1109\/IGARSS47720.2021.9554679","volume":"2021","author":"Y Sofue","year":"2021","unstructured":"Sofue Y, Hongo C, Manago N, Sigit G, Homma K, Barus B. Estimation of normal rice yield considering heading stage based on observation data and satellite imagery. IEEE Int Geosci Remote Sens Symp IGARSS. 2021;2021:6439\u201342. https:\/\/doi.org\/10.1109\/IGARSS47720.2021.9554679.","journal-title":"IEEE Int Geosci Remote Sens Symp IGARSS"},{"key":"2939_CR25","doi-asserted-by":"publisher","unstructured":"Sravan Kumar G, Venkatramaphanikumar S, Venkata Krishna Kishore K (2021) Smart farming\u2014a flexible approach to improve crop yield and profit using machine learning techniques. In: 2021 2nd international conference for emerging technology (INCET), pp 1\u20136. https:\/\/doi.org\/10.1109\/INCET51464.2021.9456433","DOI":"10.1109\/INCET51464.2021.9456433"},{"key":"2939_CR26","doi-asserted-by":"publisher","unstructured":"Singh K, Jha S (2021) Cyber threat analysis and prediction using machine learning. In: 2021 3rd international conference on advances in computing, communication control and networking (ICAC3N), Greater Noida, India, pp 1981\u20131985. https:\/\/doi.org\/10.1109\/ICAC3N53548.2021.9725445","DOI":"10.1109\/ICAC3N53548.2021.9725445"},{"issue":"2","key":"2939_CR27","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1109\/LGRS.2019.2918719","volume":"17","author":"SK Roy","year":"2020","unstructured":"Roy SK, Krishna G, Dubey SR, Chaudhuri BB. HybridSN: exploring 3-D\u20132-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett. 2020;17(2):277\u201381. https:\/\/doi.org\/10.1109\/LGRS.2019.2918719.","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"9","key":"2939_CR28","doi-asserted-by":"publisher","first-page":"7831","DOI":"10.1109\/TGRS.2020.3043267","volume":"59","author":"SK Roy","year":"2021","unstructured":"Roy SK, Manna S, Song T, Bruzzone L. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 2021;59(9):7831\u201343. https:\/\/doi.org\/10.1109\/TGRS.2020.3043267.","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"2939_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LGRS.2023.3297612","volume":"20","author":"Z Chen","year":"2023","unstructured":"Chen Z, Hong D, Gao H. Grid network: feature extraction in anisotropic perspective for hyperspectral image classification. IEEE Geosci Remote Sens Lett. 2023;20:1\u20135. https:\/\/doi.org\/10.1109\/LGRS.2023.3297612. (Art no. 5507105).","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"2939_CR30","doi-asserted-by":"publisher","first-page":"120828","DOI":"10.1016\/j.eswa.2023.120828","volume":"232","author":"C Zhonghao","year":"2023","unstructured":"Zhonghao C, Guoyong W, Hongmin G, Yao D, Danfeng H, Bing Z. Local aggregation and global attention network for hyperspectral image classification with spectral-induced aligned superpixel segmentation. Expert Syst Appl. 2023;232:120828. https:\/\/doi.org\/10.1016\/j.eswa.2023.120828. (ISSN 0957-4174).","journal-title":"Expert Syst Appl"},{"key":"2939_CR31","doi-asserted-by":"publisher","unstructured":"Lakmal D, Kugathasan K, Nanayakkara V, Jayasena S, Perera AS, Fernando L (2019) Brown planthopper damage detection using remote sensing and machine learning. In: 2019 18th IEEE international conference on machine learning and applications (ICMLA), pp 97\u2013104. https:\/\/doi.org\/10.1109\/ICMLA.2019.00024","DOI":"10.1109\/ICMLA.2019.00024"},{"key":"2939_CR32","doi-asserted-by":"publisher","unstructured":"Haque S, Rahman N, Mostakim M (2021) Classification of damaged vegetation areas using convolutional neural network over unlabelled sentinel-2 images. In: 2021 26th international conference on automation and computing (ICAC), pp 1\u20137. https:\/\/doi.org\/10.23919\/ICAC50006.2021.9594269","DOI":"10.23919\/ICAC50006.2021.9594269"},{"issue":"21","key":"2939_CR33","doi-asserted-by":"publisher","first-page":"9816","DOI":"10.3390\/app11219816","volume":"11","author":"A Rajagopal","year":"2021","unstructured":"Rajagopal A, Jha S, Khari M, Ahmad S, Alouffi B, Alharbi A. A novel approach in prediction of crop production using recurrent cuckoo search optimization neural networks. Appl Sci. 2021;11(21):9816. https:\/\/doi.org\/10.3390\/app11219816.","journal-title":"Appl Sci"},{"key":"2939_CR34","doi-asserted-by":"publisher","DOI":"10.1504\/IJCAT.2022.126097","author":"S Jha","year":"2022","unstructured":"Jha S, et al. A novel approach for decision support system in cricket using machine learning. Int J Comp Appl Technol. 2022. https:\/\/doi.org\/10.1504\/IJCAT.2022.126097.","journal-title":"Int J Comp Appl Technol"}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-024-02939-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42979-024-02939-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-024-02939-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T06:02:36Z","timestamp":1716789756000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42979-024-02939-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,27]]},"references-count":34,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2024,6]]}},"alternative-id":["2939"],"URL":"https:\/\/doi.org\/10.1007\/s42979-024-02939-6","relation":{},"ISSN":["2661-8907"],"issn-type":[{"value":"2661-8907","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5,27]]},"assertion":[{"value":"22 September 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 April 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 May 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical Approval"}}],"article-number":"585"}}