{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T23:45:54Z","timestamp":1740181554859,"version":"3.37.3"},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T00:00:00Z","timestamp":1697241600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T00:00:00Z","timestamp":1697241600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"DOI":"10.1007\/s42979-023-02269-z","type":"journal-article","created":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T10:01:38Z","timestamp":1697277698000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["An Analytical Insight of Discussions and Sentiments of Indians on Omicron-Driven Third Wave of COVID-19"],"prefix":"10.1007","volume":"4","author":[{"given":"Deepika","family":"Vatsa","sequence":"first","affiliation":[]},{"given":"Ashima","family":"Yadav","sequence":"additional","affiliation":[]},{"given":"Prabhishek","family":"Singh","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4435-675X","authenticated-orcid":false,"given":"Manoj","family":"Diwakar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,14]]},"reference":[{"key":"2269_CR1","unstructured":"Akbik A, Bergmann T, Blythe D, Rasul K, Schweter S, Vollgraf R. FLAIR: an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics (demonstrations) (pp. 54\u201359). Minneapolis: Association for Computational Linguistics. 2019. https:\/\/aclanthology.org\/N19-4010 10.18653\/v1\/ N19-4010"},{"key":"2269_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.118710","volume":"212","author":"M Arbane","year":"2023","unstructured":"Arbane M, Benlamri R, Brik Y, Alahmar AD. Social media-based covid-19 sentiment classification model using bi-lstm. Expert Syst Appl. 2023;212: 118710.","journal-title":"Expert Syst Appl"},{"issue":"1","key":"2269_CR3","doi-asserted-by":"publisher","first-page":"50","DOI":"10.3897\/jucs.2020.004","volume":"26","author":"QB Baker","year":"2020","unstructured":"Baker QB, Shatnawi F, Rawashdeh S, Al-Smadi M, Jararweh Y. Detecting epidemic diseases using sentiment analysis of arabic tweets. JUCS J Univ Comput Sci. 2020;26(1):50\u201370. https:\/\/doi.org\/10.3897\/jucs.2020.004.","journal-title":"JUCS J Univ Comput Sci"},{"key":"2269_CR4","doi-asserted-by":"publisher","unstructured":"Basiri ME, Nemati S, Abdar M, Asadi S, Acharrya UR. A novel fusion-based deep learning model for sentiment analysis of COVID- 19 tweets. Knowl Based Syst. 2021;228: 107242. https:\/\/doi.org\/10.1016\/j.knosys.2021.107242. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0950705121005049.","DOI":"10.1016\/j.knosys.2021.107242"},{"issue":"Jan","key":"2269_CR5","first-page":"993","volume":"3","author":"DM Blei","year":"2003","unstructured":"Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993\u20131022.","journal-title":"J Mach Learn Res"},{"key":"2269_CR6","doi-asserted-by":"publisher","unstructured":"Bokaee Nezhad Z, Deihimi MA. Twitter sentiment analysis from Iran about COVID 19 vaccine. Diab Metab Synd Clin Res Rev. 2022;16(1): 102367. https:\/\/doi.org\/10.1016\/j.dsx.2021.102367. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1871402121003878","DOI":"10.1016\/j.dsx.2021.102367"},{"key":"2269_CR7","unstructured":"Bureau E. Omicron peaked on January 21 with 3,47,000 daily cases. 2022. https:\/\/economictimes.indiatimes.com\/news\/india\/omicron-peaked-onjanuary-21-with-347000-daily-cases\/articleshow\/89335010.cms"},{"issue":"2","key":"2269_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/S2213-2600(21)00559-2","volume":"10","author":"TK Burki","year":"2022","unstructured":"Burki TK. Omicron variant and booster covid-19 vaccines. Lancet Respir Med. 2022;10(2): e17.","journal-title":"Lancet Respir Med"},{"issue":"5","key":"2269_CR9","doi-asserted-by":"publisher","first-page":"1073","DOI":"10.1007\/s12553-021-00585-z","volume":"11","author":"S Chekijian","year":"2021","unstructured":"Chekijian S, Li H, Fodeh S. Emergency care and the patient experience: using sentiment analysis and topic modeling to understand the impact of the COVID-19 pandemic. Health Technol (Berl). 2021;11(5):1073\u201382.","journal-title":"Health Technol (Berl)"},{"issue":"7","key":"2269_CR10","doi-asserted-by":"publisher","first-page":"2969","DOI":"10.1002\/jmv.27697","volume":"94","author":"S Chenchula","year":"2022","unstructured":"Chenchula S, Karunakaran P, Sharma S, Chavan M. Current evidence on efficacy of covid-19 booster dose vaccination against the omicron variant: a systematic review. J Med Virol. 2022;94(7):2969\u201376.","journal-title":"J Med Virol"},{"key":"2269_CR11","doi-asserted-by":"crossref","unstructured":"Cliche M. BB twtr at SemEval-2017 task 4: Twitter sentiment analysis with CNNs and LSTMs. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017) (pp. 573-580). Vancouver: Association for Computational Linguistics. 2017. https:\/\/aclanthology.org\/S17-2094 10.18653\/v1\/S17-2094","DOI":"10.18653\/v1\/S17-2094"},{"key":"2269_CR12","doi-asserted-by":"publisher","unstructured":"Culotta A. Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the first workshop on social media analytics (p. 115-122). New York: Association for Computing Machinery. 2010. https:\/\/doi.org\/10.1145\/1964858.1964874","DOI":"10.1145\/1964858.1964874"},{"key":"2269_CR13","doi-asserted-by":"crossref","unstructured":"Das S, Kolya AK. Predicting the pandemic: sentiment evaluation and predictive analysis from large-scale tweets on Covid-19 by deep convolutional neural network. Evol Intell. 2021:1\u201322.","DOI":"10.1007\/s12065-021-00598-7"},{"issue":"4","key":"2269_CR14","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1001\/jama.2021.24315","volume":"327","author":"C Del Rio","year":"2022","unstructured":"Del Rio C, Omer SB, Malani PN. Winter of omicron-the evolving covid-19 pandemic. JAMA. 2022;327(4):319\u201320.","journal-title":"JAMA"},{"issue":"12","key":"2269_CR15","doi-asserted-by":"publisher","first-page":"1700","DOI":"10.1016\/j.ajic.2016.04.253","volume":"44","author":"K-W Fu","year":"2016","unstructured":"Fu K-W, Liang H, Saroha N, Tse ZTH, Ip P, Fung IC-H. How people react to Zika virus outbreaks on Twitter? A computational content analysis. Am J Infect Control. 2016;44(12):1700\u20132.","journal-title":"Am J Infect Control"},{"key":"2269_CR16","doi-asserted-by":"publisher","unstructured":"Garcia K, Berton L. Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Appl Soft Comput. 2021;101: 107057. https:\/\/doi.org\/10.1016\/j.asoc.2020.107057. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1568494620309959","DOI":"10.1016\/j.asoc.2020.107057"},{"key":"2269_CR17","doi-asserted-by":"crossref","unstructured":"Haque MA, Sonal D, Haque S, Kumar K, Rahman M. The role of internet of things (iot) to fight against covid-19. Proceedings of the international conference on data science, machine learning and artificial intelligence. 2021;140-146.","DOI":"10.1145\/3484824.3484900"},{"key":"2269_CR18","doi-asserted-by":"crossref","unstructured":"Haque MA, Haque S, Alhazmi S, Pandit DN. Artificial intelligence and covid-19: a practical approach. Mach Learn Methods Eng Appl Dev. 2022:92\u2013109.","DOI":"10.2174\/9879815079180122010010"},{"key":"2269_CR19","unstructured":"HT. India\u2019s first Omicron cases detected in Karnataka. 2021. https:\/\/www.hindustantimes.com\/india-news\/indias-first-omicroncases-detected-in-karnataka-101638445884205.html"},{"key":"2269_CR20","first-page":"560","volume-title":"Emerging technologies in computer engineering: cognitive computing and intelligent iot","author":"D Kumar","year":"2022","unstructured":"Kumar D, Mishra K, Islam F, Haque MA, Kumar K, Mishra BK. The impact and challenges of covid-19 pandemic on e-learning. In: Balas VE, Sinha GR, Agarwal B, Sharma TK, Dadheech P, Mahrishi M, editors. Emerging technologies in computer engineering: cognitive computing and intelligent iot. Cham: Springer International Publishing; 2022. p. 560\u201372."},{"issue":"1","key":"2269_CR21","doi-asserted-by":"publisher","first-page":"438","DOI":"10.1186\/s12889-019-6747-8","volume":"19","author":"H Liang","year":"2019","unstructured":"Liang H, Fung IC-H, Tse ZTH, Yin J, Chan C-H, Pechta LE, Fu K-W. How did Ebola information spread on twitter: broadcasting or viral spreading? BMC Public Health. 2019;19(1):438.","journal-title":"BMC Public Health"},{"issue":"39","key":"2269_CR22","doi-asserted-by":"publisher","first-page":"5499","DOI":"10.1016\/j.vaccine.2021.08.058","volume":"39","author":"S Liu","year":"2021","unstructured":"Liu S, Liu J. Public attitudes toward COVID-19 vaccines on English-language Twitter: a sentiment analysis. Vaccine. 2021;39(39):5499\u2013505.","journal-title":"Vaccine"},{"issue":"1","key":"2269_CR23","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1007\/s13278-021-00825-0","volume":"11","author":"CE Lopez","year":"2021","unstructured":"Lopez CE, Gallemore C. An augmented multilingual Twitter dataset for studying the COVID-19 infodemic. Soc Netw Anal Min. 2021;11(1):102.","journal-title":"Soc Netw Anal Min"},{"issue":"1161","key":"2269_CR24","doi-asserted-by":"publisher","first-page":"544","DOI":"10.1136\/postgradmedj-2021-140685","volume":"98","author":"R Marcec","year":"2022","unstructured":"Marcec R, Likic R. Using twitter for sentiment analysis towards astrazeneca\/oxford, pfizer\/biontech and moderna covid-19 vaccines. Postgrad Med J. 2022;98(1161):544\u201350.","journal-title":"Postgrad Med J"},{"issue":"7","key":"2269_CR25","doi-asserted-by":"publisher","first-page":"947","DOI":"10.1038\/s41562-021-01122-8","volume":"5","author":"E Mathieu","year":"2021","unstructured":"Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Rod\u00e9s-Guirao L. A global database of COVID-19 vaccinations. Nat Hum Behav. 2021;5(7):947\u201353.","journal-title":"Nat Hum Behav"},{"key":"2269_CR26","doi-asserted-by":"publisher","unstructured":"Melton CA, Olusanya OA, Ammar N, Shaban-Nejad A. Public sentiment analysis and topic modeling regarding COVID- 19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence. J Infect Public Health. 2021;14(10):1505\u201312. https:\/\/doi.org\/10.1016\/j.jiph.2021.08.010. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1876034121002288. ((Special Issue on COVID-19 - Vaccine, Variants and New Waves)).","DOI":"10.1016\/j.jiph.2021.08.010"},{"key":"2269_CR27","doi-asserted-by":"publisher","unstructured":"Mohamed Ridhwan K, Hargreaves CA. Leveraging Twitter data to understand public sentiment for the COVID-19 outbreak in Singapore. Int J Inform Manag Data Insights. 2021;1(2): 100021. https:\/\/doi.org\/10.1016\/j.jjimei.2021.100021. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S2667096821000148","DOI":"10.1016\/j.jjimei.2021.100021"},{"key":"2269_CR28","unstructured":"MoHFW, G.o.I. Guidelines for covid-19 vaccination of children between 15\u201318 years and precaution dose to hcws, flws and 60+ population with comorbidities. 2022. https:\/\/www.mohfw.gov.in\/pdf\/GuidelinesforCOVID19VaccinationofChildrenbetween15to18yearsandPrecautionDosetoHCWsFLWs &.pdf"},{"key":"2269_CR29","doi-asserted-by":"publisher","first-page":"4941","DOI":"10.1007\/s10462-021-10106-z","volume":"55","author":"Y Peng","year":"2022","unstructured":"Peng Y, Liu E, Peng S, Chen Q, Li D, Lian D. Using artificial intelligence technology to fight covid-19: a review. Artif Intelli Rev. 2022;55:4941\u201377.","journal-title":"Artif Intelli Rev"},{"issue":"19","key":"2269_CR30","doi-asserted-by":"publisher","first-page":"27009","DOI":"10.1007\/s11042-021-11004-w","volume":"81","author":"I Priyadarshini","year":"2021","unstructured":"Priyadarshini I, Mohanty P, Kumar R, Sharma R, Puri V, Singh PK. A study on the sentiments and psychology of twitter users during COVID-19 lockdown period. Multimed Tools Appl. 2021;81(19):27009\u201331.","journal-title":"Multimed Tools Appl"},{"key":"2269_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.118715","volume":"212","author":"M Qorib","year":"2023","unstructured":"Qorib M, Oladunni T, Denis M, Ososanya E, Cotae P. Covid- 19 vaccine hesitancy: text mining, sentiment analysis and machine learning on covid-19 vaccination twitter dataset. Expert Syst Appl. 2023;212: 118715.","journal-title":"Expert Syst Appl"},{"issue":"2","key":"2269_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0245909","volume":"16","author":"F Rustam","year":"2021","unstructured":"Rustam F, Khalid M, Aslam W, Rupapara V, Mehmood A, Choi GS. A performance comparison of supervised machine learning models for COVID-19 tweets sentiment analysis. PLOS One. 2021;16(2):1\u201323. https:\/\/doi.org\/10.1371\/journal.pone.0245909.","journal-title":"PLOS One."},{"issue":"8","key":"2269_CR33","doi-asserted-by":"publisher","first-page":"3709","DOI":"10.3390\/app12083709","volume":"12","author":"C Singh","year":"2022","unstructured":"Singh C, Imam T, Wibowo S, Grandhi S. A deep learning approach for sentiment analysis of covid-19 reviews. Appl Sci. 2022;12(8):3709.","journal-title":"Appl Sci"},{"key":"2269_CR34","unstructured":"Statista. Statista: number of twitter users worldwide from 2019 to 2024. 2022. https:\/\/www.statista.com\/statistics\/303681\/twitter-users-worldwide\/"},{"issue":"100851","key":"2269_CR35","doi-asserted-by":"publisher","DOI":"10.1016\/j.ssmph.2021.100851","volume":"15","author":"D Thorpe Huerta","year":"2021","unstructured":"Thorpe Huerta D, Hawkins JB, Brownstein JS, Hswen Y. Exploring discussions of health and risk and public sentiment in Massachusetts during COVID-19 pandemic mandate implementation: a Twitter analysis. SSM Popul Health. 2021;15(100851): 100851.","journal-title":"SSM Popul Health"},{"key":"2269_CR36","unstructured":"WHO. Coronavirus disease (COVID-19) pandemic. 2020. https:\/\/www.euro.who.int\/en\/health-topics\/healthemergencies\/ coronavirus-covid-19\/novel-coronavirus-2019-ncov"},{"key":"2269_CR37","unstructured":"WHO. WHO Director-General\u2019s opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020. https:\/\/tinyurl.com\/2p8fytjc"},{"key":"2269_CR38","unstructured":"WHO. WHO Coronavirus (COVID-19) Dashboard. 2022. https:\/\/covid19.who.int\/"},{"issue":"1","key":"2269_CR39","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3475867","volume":"22","author":"A Yadav","year":"2021","unstructured":"Yadav A, Vishwakarma DK. A language-independent network to analyze the impact of COVID-19 on the world via sentiment analysis. ACM Trans Internet Technol. 2021;22(1):1\u201330. https:\/\/doi.org\/10.1145\/3475867.","journal-title":"ACM Trans Internet Technol"},{"key":"2269_CR40","doi-asserted-by":"publisher","unstructured":"Yousefinaghani S, Dara R, Mubareka S, Papadopoulos A, Sharif S. An analysis of COVID-19 vaccine sentiments and opinions on twitter. Int J Infect Dis. 2021;108:256-262. https:\/\/doi.org\/10.1016\/j.ijid.2021.05.059. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1201971221004628","DOI":"10.1016\/j.ijid.2021.05.059"}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-023-02269-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42979-023-02269-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-023-02269-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T10:11:49Z","timestamp":1697278309000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42979-023-02269-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,14]]},"references-count":40,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2023,11]]}},"alternative-id":["2269"],"URL":"https:\/\/doi.org\/10.1007\/s42979-023-02269-z","relation":{},"ISSN":["2661-8907"],"issn-type":[{"type":"electronic","value":"2661-8907"}],"subject":[],"published":{"date-parts":[[2023,10,14]]},"assertion":[{"value":"6 March 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 August 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 October 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"Not Applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}},{"value":"Not Applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate:"}},{"value":"Not Applicable.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication:"}}],"article-number":"791"}}