{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T23:45:49Z","timestamp":1740181549855,"version":"3.37.3"},"reference-count":39,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2022,7,25]],"date-time":"2022-07-25T00:00:00Z","timestamp":1658707200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,7,25]],"date-time":"2022-07-25T00:00:00Z","timestamp":1658707200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"DOI":"10.1007\/s42979-022-01250-6","type":"journal-article","created":{"date-parts":[[2022,7,25]],"date-time":"2022-07-25T16:03:16Z","timestamp":1658764996000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["DepML: An Efficient Machine Learning-Based MDD Detection System in IoMT Framework"],"prefix":"10.1007","volume":"3","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8906-7820","authenticated-orcid":false,"given":"Geetanjali","family":"Sharma","sequence":"first","affiliation":[]},{"given":"Amit M.","family":"Joshi","sequence":"additional","affiliation":[]},{"given":"Emmanuel S.","family":"Pilli","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,25]]},"reference":[{"key":"1250_CR1","unstructured":"Organization WH, et al. Depression and other common mental disorders: global health estimates. World Health Organization, Tech. Rep.; 2017."},{"key":"1250_CR2","unstructured":"World Federation for Mental Health, Depression: a global crisis, Occoquan, VA, USA, (2012)."},{"issue":"6","key":"1250_CR3","doi-asserted-by":"publisher","first-page":"1339","DOI":"10.1007\/s11517-021-02358-2","volume":"59","author":"M Tadalagi","year":"2021","unstructured":"Tadalagi M, Joshi AM. AutoDep: automatic depression detection using facial expressions based on linear binary pattern descriptor. Med Biol Eng Comput. 2021 Jun;59(6):1339\u201354.","journal-title":"Med Biol Eng Comput."},{"issue":"3","key":"1250_CR4","doi-asserted-by":"publisher","first-page":"1183","DOI":"10.1109\/TETC.2020.2972007","volume":"9","author":"DA Rohani","year":"2020","unstructured":"Rohani DA, Springer A, Hollis V, Bardram JE, Whittaker S. Recommending activities for mental health and well-being: Insights from two user studies. IEEE Trans Emerg Top Comput. 2020 Feb 6;9(3):1183\u201393.","journal-title":"IEEE Trans Emerg Top Comput."},{"key":"1250_CR5","unstructured":"National Institute of Mental Health, Brain basics, obtained from https:\/\/www.nimh.nih.gov\/health\/educational-resources\/brain-basics\/brain-basics.shtml#GrowingBrain."},{"issue":"8","key":"1250_CR6","doi-asserted-by":"publisher","first-page":"75616","DOI":"10.1109\/ACCESS.2020.2987523","volume":"13","author":"Y Ding","year":"2020","unstructured":"Ding Y, Chen X, Fu Q, Zhong S. A depression recognition method for college students using deep integrated support vector algorithm. IEEE Access. 2020 Apr 13;8:75616\u201329.","journal-title":"IEEE Access."},{"key":"1250_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10844-021-00653-w","volume":"57","author":"M Mousavian","year":"2021","unstructured":"Mousavian M, Chen J, Traylor Z, Greening S. Depression detection from smri and rs-fmri images using machine learning. J Intell Inf Syst. 2021;57:1\u201324.","journal-title":"J Intell Inf Syst"},{"issue":"2","key":"1250_CR8","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1007\/s00406-012-0329-4","volume":"263","author":"D Grotegerd","year":"2013","unstructured":"Grotegerd D, Suslow T, Bauer J, Ohrmann P, Arolt V, Stuhrmann A, Heindel W, Kugel H, Dannlowski U. Discriminating unipolar and bipolar depression by means of fmri and pattern classification: a pilot study. Eur Arch Psychiatry Clin Neurosci. 2013;263(2):119\u201331.","journal-title":"Eur Arch Psychiatry Clin Neurosci"},{"issue":"3","key":"1250_CR9","doi-asserted-by":"publisher","first-page":"347","DOI":"10.1016\/j.mri.2011.12.016","volume":"30","author":"Q Lu","year":"2012","unstructured":"Lu Q, Liu G, Zhao J, Luo G, Yao Z. Depression recognition using resting-state and event-related fmri signals. Magn Reson Imaging. 2012;30(3):347\u201355.","journal-title":"Magn Reson Imaging"},{"key":"1250_CR10","doi-asserted-by":"crossref","unstructured":"Cai H, Han J, Chen Y, Sha X, Wang Z, Hu B, Yang J, Feng L, Ding Z, Chen Y, Gutknecht J. A pervasive approach to EEG-based depression detection. Complexity. 2018 Feb 6;2018.","DOI":"10.1155\/2018\/5238028"},{"issue":"4","key":"1250_CR11","doi-asserted-by":"publisher","first-page":"306","DOI":"10.1002\/(SICI)1099-1166(200004)15:4<306::AID-GPS111>3.0.CO;2-Q","volume":"15","author":"A Denihan","year":"2000","unstructured":"Denihan A, Wilson G, Cunningham C, Coakley D, Lawlor BA. Ct measurement of medial temporal lobe atrophy in Alzheimer\u2019s disease, vascular dementia, depression and paraphrenia. Int J Geriatr Psychiatry. 2000;15(4):306\u201312.","journal-title":"Int J Geriatr Psychiatry"},{"issue":"3","key":"1250_CR12","doi-asserted-by":"publisher","first-page":"642","DOI":"10.1109\/JBHI.2017.2727218","volume":"22","author":"F Movahedi","year":"2017","unstructured":"Movahedi F, Coyle JL, Sejdi\u0107 E. Deep belief networks for electroencephalography: a review of recent contributions and future outlooks. IEEE J Biomed Health Inf. 2017;22(3):642\u201352.","journal-title":"IEEE J Biomed Health Inf"},{"issue":"1","key":"1250_CR13","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1109\/TCDS.2018.2826840","volume":"11","author":"Z Lan","year":"2018","unstructured":"Lan Z, Sourina O, Wang L, Scherer R, M\u00fcller-Putz GR. Domain adaptation techniques for eeg-based emotion recognition: a comparative study on two public datasets. IEEE Trans Cognit Dev Syst. 2018;11(1):85\u201394.","journal-title":"IEEE Trans Cognit Dev Syst"},{"key":"1250_CR14","unstructured":"Kokate P, Pancholi S, Joshi AM. Classification of upper arm movements from eeg signals using machine learning with ica analysis. arXiv preprint arXiv:2107.08514, 2021."},{"key":"1250_CR15","first-page":"2150043","volume":"21(06)","author":"P Sidharth","year":"2021","unstructured":"Pancholi S, Joshi AM. Intelligent upper-limb prosthetic control (iULP) with novel feature extraction method for pattern recognition using EMG. J Mech Med Biol. 2021 Aug 11;21(06):2150043.","journal-title":"J Mech Med Biol"},{"key":"1250_CR16","unstructured":"Sharma G, Joshi AM. Novel eeg based schizophrenia detection with iomt framework for smart healthcare. arXiv preprint arXiv:2111.11298, 2021."},{"key":"1250_CR17","doi-asserted-by":"publisher","first-page":"102393","DOI":"10.1016\/j.bspc.2020.102393","volume":"66","author":"G Sharma","year":"2021","unstructured":"Sharma G, Parashar A, Joshi AM. Dephnn: A novel hybrid neural network for electroencephalogram (eeg)-based screening of depression. Biomed Signal Process Control. 2021;66:102393.","journal-title":"Biomed Signal Process Control"},{"key":"1250_CR18","doi-asserted-by":"publisher","first-page":"6449","DOI":"10.1007\/s10489-021-02426-y","volume":"51(9)","author":"E Aydemir","year":"2021","unstructured":"Aydemir E, Tuncer T, Dogan S, Gururajan R, Acharya UR. Automated major depressive disorder detection using melamine pattern with EEG signals. Appl Intell. 2021 Sep;51(9):6449\u201366.","journal-title":"Appl Intell"},{"issue":"2","key":"1250_CR19","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1007\/s11517-017-1685-z","volume":"56","author":"W Mumtaz","year":"2018","unstructured":"Mumtaz W, Ali SSA, Yasin MAM, Malik AS. A machine learning framework involving eeg-based functional connectivity to diagnose major depressive disorder (mdd). Med Biol Eng Comput. 2018;56(2):233\u201346.","journal-title":"Med Biol Eng Comput"},{"key":"1250_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijmedinf.2019.103983","volume":"132","author":"W Mumtaz","year":"2019","unstructured":"Mumtaz W, Qayyum A. A deep learning framework for automatic diagnosis of unipolar depression. Int J Med Inf. 2019;132: 103983.","journal-title":"Int J Med Inf"},{"issue":"3","key":"1250_CR21","doi-asserted-by":"publisher","first-page":"1065","DOI":"10.1007\/s00542-018-4075-z","volume":"25","author":"S Mahato","year":"2019","unstructured":"Mahato S, Paul S. Detection of major depressive disorder using linear and non-linear features from eeg signals. Microsyst Technol. 2019;25(3):1065\u201376.","journal-title":"Microsyst Technol"},{"issue":"3","key":"1250_CR22","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1016\/j.cmpb.2012.10.008","volume":"109","author":"B Hosseinifard","year":"2013","unstructured":"Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed. 2013;109(3):339\u201345.","journal-title":"Comput Methods Programs Biomed"},{"key":"1250_CR23","doi-asserted-by":"crossref","unstructured":"Sharma G, Joshi AM, Pilli ES. An Automated MDD Detection System based on Machine Learning Methods in Smart Connected Healthcare. In2021 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) 2021 Dec 18;27\u201332 IEEE.","DOI":"10.1109\/iSES52644.2021.00019"},{"issue":"1","key":"1250_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-79139-8","volume":"11","author":"S-Q Ong","year":"2021","unstructured":"Ong S-Q, Ahmad H, Nair G, Isawasan P, Majid AHA. Implementation of a deep learning model for automated classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in real time. Sci Rep. 2021;11(1):1\u201312.","journal-title":"Sci Rep"},{"issue":"3","key":"1250_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LSENS.2019.2898257","volume":"3","author":"S Pancholi","year":"2019","unstructured":"Pancholi S, Joshi AM. Electromyography-based hand gesture recognition system for upper limb amputees. IEEE Sens Lett. 2019;3(3):1\u20134.","journal-title":"IEEE Sens Lett"},{"issue":"1\u20132","key":"1250_CR26","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1159\/000438457","volume":"74","author":"UR Acharya","year":"2015","unstructured":"Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Puthankatti SD, Adeli A. A novel depression diagnosis index using nonlinear features in eeg signals. Eur Neurol. 2015;74(1\u20132):79\u201383.","journal-title":"Eur Neurol"},{"issue":"03","key":"1250_CR27","doi-asserted-by":"publisher","first-page":"1650035","DOI":"10.1142\/S0219519416500354","volume":"16","author":"GM Bairy","year":"2016","unstructured":"Bairy GM, Niranjan U, Puthankattil SD. Automated classification of depression EEG signals using wavelet entropies and energies. J Mech Med Biol. 2016;16(03):1650035.","journal-title":"J Mech Med Biol"},{"issue":"8","key":"1250_CR28","doi-asserted-by":"publisher","first-page":"1857","DOI":"10.1166\/jmihi.2017.2204","volume":"7","author":"GM Bairy","year":"2017","unstructured":"Bairy GM, Lih OS, Hagiwara Y, Puthankattil SD, Faust O, Niranjan U, Acharya UR. Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features. J Med Imaging Health Inf. 2017;7(8):1857\u201362.","journal-title":"J Med Imaging Health Inf"},{"key":"1250_CR29","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1016\/j.bspc.2016.07.006","volume":"31","author":"W Mumtaz","year":"2017","unstructured":"Mumtaz W, Xia L, Ali SSA, Yasin MAM, Hussain M, Malik AS. Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed Signal Process Control. 2017;31:108\u201315.","journal-title":"Biomed Signal Process Control"},{"issue":"2","key":"1250_CR30","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1016\/j.ijpsycho.2012.05.001","volume":"85","author":"M Ahmadlou","year":"2012","unstructured":"Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206\u201311.","journal-title":"Int J Psychophysiol"},{"key":"1250_CR31","doi-asserted-by":"crossref","unstructured":"Jain P, Joshi AM, Mohanty SP. iGLU 1.1: Towards a glucose-insulin model based closed loop iomt framework for automatic insulin control of diabetic patients. In2020 IEEE 6th World Forum on Internet of Things (WF-IoT) 2020 Jun 2;1\u20136. IEEE.","DOI":"10.1109\/WF-IoT48130.2020.9221132"},{"issue":"1","key":"1250_CR32","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1109\/TCE.2022.3145055","volume":"68","author":"AM Joshi","year":"2022","unstructured":"Joshi AM, Jain P, Mohanty SP. iglu 3.0: A secure noninvasive glucometer and automatic insulin delivery system in iomt. IEEE Trans Consum Electron. 2022 Jan 21;68(1):14\u201322.","journal-title":"IEEE Trans Consum Electron"},{"issue":"22","key":"1250_CR33","doi-asserted-by":"publisher","first-page":"6526","DOI":"10.3390\/s20226526","volume":"20","author":"M Kang","year":"2020","unstructured":"Kang M, Kwon H, Park J-H, Kang S, Lee Y. Deep-asymmetry: asymmetry matrix image for deep learning method in pre-screening depression. Sensors. 2020;20(22):6526.","journal-title":"Sensors"},{"key":"1250_CR34","doi-asserted-by":"publisher","first-page":"476","DOI":"10.1016\/j.neuroimage.2019.01.055","volume":"189","author":"F Van de Steen","year":"2019","unstructured":"Van de Steen F, Almgren H, Razi A, Friston K, Marinazzo D. Dynamic causal modelling of fluctuating connectivity in resting-state eeg. Neuroimage. 2019;189:476\u201384.","journal-title":"Neuroimage"},{"issue":"3","key":"1250_CR35","doi-asserted-by":"publisher","first-page":"233","DOI":"10.3233\/THC-181497","volume":"27","author":"H Namazi","year":"2019","unstructured":"Namazi H, Aghasian E, Ala TS. Fractal-based classification of electroencephalography (eeg) signals in healthy adolescents and adolescents with symptoms of schizophrenia. Technol Health Care. 2019;27(3):233\u201341.","journal-title":"Technol Health Care"},{"key":"1250_CR36","doi-asserted-by":"crossref","unstructured":"Pancholi S, Jain P, Varghese, et al. A novel time-domain based feature for emg-pr prosthetic and rehabilitation application. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2019;7:2019\u20135084.","DOI":"10.1109\/EMBC.2019.8857399"},{"issue":"2","key":"1250_CR37","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0171409","volume":"12","author":"W Mumtaz","year":"2017","unstructured":"Mumtaz W, Xia L, MohdYasin MA, AzharAli SS, Malik AS. A wavelet-based technique to predict treatment outcome for major depressive disorder. PLoS One. 2017;12(2): e0171409.","journal-title":"PLoS One"},{"issue":"1","key":"1250_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-019-1486-z","volume":"44","author":"S Mahato","year":"2020","unstructured":"Mahato S, Paul S. Classification of depression patients and normal subjects based on electroencephalogram (eeg) signal using alpha power and theta asymmetry. J Med Syst. 2020;44(1):1\u20138.","journal-title":"J Med Syst"},{"issue":"5","key":"1250_CR39","doi-asserted-by":"publisher","first-page":"4315","DOI":"10.1109\/JSEN.2022.3143176","volume":"22","author":"DM Khan","year":"2022","unstructured":"Khan DM, Masroor K, Jailani MF, Yahya N, Yusoff MZ, Khan SM. Development of wavelet coherence EEG as a biomarker for diagnosis of major depressive disorder. IEEE Sens J. 2022 Jan 14;22(5):4315\u201325.","journal-title":"IEEE Sens J"}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-022-01250-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42979-022-01250-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-022-01250-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,19]],"date-time":"2022-09-19T19:27:24Z","timestamp":1663615644000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42979-022-01250-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,25]]},"references-count":39,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2022,9]]}},"alternative-id":["1250"],"URL":"https:\/\/doi.org\/10.1007\/s42979-022-01250-6","relation":{},"ISSN":["2661-8907"],"issn-type":[{"type":"electronic","value":"2661-8907"}],"subject":[],"published":{"date-parts":[[2022,7,25]]},"assertion":[{"value":"5 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 June 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 July 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"394"}}