{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T09:15:18Z","timestamp":1726478118150},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1007\/s42979-020-0076-y","type":"journal-article","created":{"date-parts":[[2020,3,3]],"date-time":"2020-03-03T14:02:48Z","timestamp":1583244168000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":46,"title":["Sentiment Analysis Using Gated Recurrent Neural Networks"],"prefix":"10.1007","volume":"1","author":[{"given":"Sharat","family":"Sachin","sequence":"first","affiliation":[]},{"given":"Abha","family":"Tripathi","sequence":"additional","affiliation":[]},{"given":"Navya","family":"Mahajan","sequence":"additional","affiliation":[]},{"given":"Shivani","family":"Aggarwal","sequence":"additional","affiliation":[]},{"given":"Preeti","family":"Nagrath","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,3,3]]},"reference":[{"key":"76_CR1","doi-asserted-by":"publisher","first-page":"897","DOI":"10.1016\/j.jbusres.2015.07.001","volume":"69","author":"S Erevelles","year":"2016","unstructured":"Erevelles S, Fukawa N, Swayne L. Big Data consumer analytics and the transformation of marketing. J Bus Res. 2016;69:897\u2013904.","journal-title":"J Bus Res"},{"key":"76_CR2","doi-asserted-by":"crossref","unstructured":"Rosenthal S, Farra N, Nakov P. SemEval-2017 task 4: sentiment analysis on Twitter. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017); 2017. p. 502\u2013518.","DOI":"10.18653\/v1\/S17-2088"},{"key":"76_CR3","doi-asserted-by":"crossref","unstructured":"O\u2019Connor B, Balasubramanyan R, Routledge BR, Smith NA. From tweets to polls: linking text sentiment to public opinion time series. In: Fourth international AAAI conference on weblogs and social media; 2010.","DOI":"10.1609\/icwsm.v4i1.14031"},{"key":"76_CR4","unstructured":"Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures. In: International conference on machine learning; 2015. p. 2342\u201350."},{"issue":"8","key":"76_CR5","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735\u201380.","journal-title":"Neural Comput"},{"key":"76_CR6","doi-asserted-by":"crossref","unstructured":"Cho K, Merrienboer BV, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder\u2013decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing; 2014. p. 1724\u20131734.","DOI":"10.3115\/v1\/D14-1179"},{"issue":"6","key":"76_CR7","first-page":"424","volume":"8","author":"QT Ain","year":"2017","unstructured":"Ain QT, Ali M, Riaz A, Noureen A, Kamran M, Hayat B, Rehman A. Sentiment analysis using deep learning techniques: a review. Int J Adv Comput Sci Appl. 2017;8(6):424.","journal-title":"Int J Adv Comput Sci Appl"},{"issue":"4","key":"76_CR8","doi-asserted-by":"publisher","first-page":"1093","DOI":"10.1016\/j.asej.2014.04.011","volume":"5","author":"W Medhat","year":"2014","unstructured":"Medhat W, Hassan A, Korashy H. Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J. 2014;5(4):1093\u2013113.","journal-title":"Ain Shams Eng J"},{"issue":"5","key":"76_CR9","doi-asserted-by":"publisher","first-page":"855","DOI":"10.1109\/TPAMI.2008.137","volume":"31","author":"A Graves","year":"2008","unstructured":"Graves A, Liwicki M, Fern\u00e1ndez S, Bertolami R, Bunke H, Schmidhuber J. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell. 2008;31(5):855\u201368.","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"76_CR10","doi-asserted-by":"crossref","unstructured":"Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE; 2013. p. 6645\u201349.","DOI":"10.1109\/ICASSP.2013.6638947"},{"key":"76_CR11","unstructured":"Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint. 2014; arXiv:1412.3555."},{"key":"76_CR12","unstructured":"Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint. 2015; arXiv:1508.01991."},{"key":"76_CR13","doi-asserted-by":"crossref","unstructured":"Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E. Hierarchical attention networks for document classification. In: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies; 2016. p. 1480\u20139.","DOI":"10.18653\/v1\/N16-1174"},{"key":"76_CR14","unstructured":"Lakkaraju H, Socher R, Manning C. Aspect specific sentiment analysis using hierarchical deep learning. In: NIPS Workshop on deep learning and representation learning; 2014."},{"issue":"8","key":"76_CR15","doi-asserted-by":"publisher","first-page":"2163","DOI":"10.1007\/s13042-018-0799-4","volume":"10","author":"M Al-Smadi","year":"2019","unstructured":"Al-Smadi M, Talafha B, Al-Ayyoub M, Jararweh Y. Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews. Int J Mach Learn Cybern. 2019;10(8):2163\u201375.","journal-title":"Int J Mach Learn Cybern"},{"key":"76_CR16","doi-asserted-by":"crossref","unstructured":"Guo J, Cheng J, Cleland-Huang J. Semantically enhanced software traceability using deep learning techniques. In: IEEE\/ACM 39th international conference on software engineering; 2017. p. 3\u201314.","DOI":"10.1109\/ICSE.2017.9"},{"key":"76_CR17","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.neucom.2018.04.045","volume":"308","author":"G Rao","year":"2018","unstructured":"Rao G, Huang W, Feng Z, Cong Q. LSTM with sentence representations for document-level sentiment classification. Neurocomputing. 2018;308:49\u201357.","journal-title":"Neurocomputing"},{"key":"76_CR18","doi-asserted-by":"crossref","unstructured":"Baktha K, Tripathy BK. Investigation of recurrent neural networks in the field of sentiment analysis. In: 2017 international conference on communication and signal processing (ICCSP). IEEE; 2017. p. 2047\u201350.","DOI":"10.1109\/ICCSP.2017.8286763"},{"key":"76_CR19","doi-asserted-by":"crossref","unstructured":"Tutubalina E, Nikolenko S. Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews. J Healthc Eng. 2017;1\u20139.","DOI":"10.1155\/2017\/9451342"},{"key":"76_CR20","doi-asserted-by":"crossref","unstructured":"Dey R, Salemt FM. Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE; 2017. p. 1597\u20131600.","DOI":"10.1109\/MWSCAS.2017.8053243"},{"issue":"3","key":"76_CR21","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1109\/MIS.2013.34","volume":"28","author":"M W\u00f6llmer","year":"2013","unstructured":"W\u00f6llmer M, Weninger F, Knaup T, Schuller B, Sun C, Sagae K, Morency LP. Youtube movie reviews: sentiment analysis in an audio-visual context. IEEE Intell Syst. 2013;28(3):46\u201353.","journal-title":"IEEE Intell Syst"},{"key":"76_CR22","unstructured":"Ruales J. Recurrent neural networks for sentiment analysis. In: IEEE. Colombia: Colombia University; 2011."},{"key":"76_CR23","doi-asserted-by":"publisher","first-page":"55392","DOI":"10.1109\/ACCESS.2018.2868970","volume":"6","author":"DL Minh","year":"2018","unstructured":"Minh DL, Sadeghi-Niaraki A, Huy HD, Min K, Moon H. Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. IEEE Access. 2018;6:55392\u2013404.","journal-title":"IEEE Access"},{"key":"76_CR24","unstructured":"Wang N, Wang J, Zhang X. YNU-HPCC at IJCNLP-2017 Task 4: attention-based Bi-directional GRU model for customer feedback analysis task of English. In: Proceedings of the IJCNLP; 2017. p. 174\u20139."},{"key":"76_CR25","doi-asserted-by":"crossref","unstructured":"Zhang L, Zhou Y, Duan X, Chen R. A hierarchical multi-input and output Bi-GRU Model for sentiment analysis on customer reviews. In: IOP conference series: materials science and engineering, vol. 322, no. 6; IOP Publishing; 2018. p. 062007.","DOI":"10.1088\/1757-899X\/322\/6\/062007"},{"key":"76_CR26","doi-asserted-by":"crossref","unstructured":"Huang Y, Jiang Y, Hasan T, Jiang Q, Li C. A topic Bi-LSTM model for sentiment classification. In: Proceedings of the 2nd international conference on innovation in artificial intelligence. ACM; 2018. p. 143\u20137.","DOI":"10.1145\/3194206.3194240"},{"key":"76_CR27","doi-asserted-by":"crossref","unstructured":"Wu J, Zheng K, Sun J. Text sentiment classification based on layered attention network. In: Proceedings of the 2019 3rd high-performance computing and cluster technologies conference. ACM; 2019. p. 162\u20136.","DOI":"10.1145\/3341069.3342990"},{"issue":"3\u20134","key":"76_CR28","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1007\/s00779-018-1183-9","volume":"23","author":"LX Luo","year":"2019","unstructured":"Luo LX. Network text sentiment analysis method combining LDA text representation and GRU-CNN. Pers Ubiquit Comput. 2019;23(3\u20134):405\u201312.","journal-title":"Pers Ubiquit Comput"},{"key":"76_CR29","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1016\/j.knosys.2018.07.041","volume":"161","author":"N Majumder","year":"2018","unstructured":"Majumder N, Hazarika D, Gelbukh A, Cambria E, Poria S. Multimodal sentiment analysis using hierarchical fusion with context modeling. Knowl-Based Syst. 2018;161:124\u201333.","journal-title":"Knowl-Based Syst"},{"key":"76_CR30","doi-asserted-by":"crossref","unstructured":"Jabreel M, Hassan F, Moreno A. Target-dependent sentiment analysis of tweets using bidirectional gated recurrent neural networks. In: Advances in hybridization of intelligent methods. Cham: Springer; 2018. p. 39\u201355.","DOI":"10.1007\/978-3-319-66790-4_3"},{"key":"76_CR31","unstructured":"Shen T, Zhou T, Long G, Jiang J, Zhang C. Bi-directional block self-attention for fast and memory-efficient sequence modeling. arXiv preprint. 2018; arXiv:1804.00857."},{"key":"76_CR32","doi-asserted-by":"crossref","unstructured":"Piao G, Breslin JG. Financial aspect and sentiment predictions with deep neural networks: an ensemble approach. In: Companion Proceedings of the Web Conference 2018. International World Wide Web Conferences Steering Committee; 2018. p. 1973\u20137.","DOI":"10.1145\/3184558.3191829"},{"key":"76_CR33","doi-asserted-by":"crossref","unstructured":"Wang Y, Sun A, Han J, Liu Y, Zhu X. Sentiment analysis by capsules. In: Proceedings of the 2018 World Wide Web Conference. International World Wide Web Conferences Steering Committee; 2018. p. 1165\u201374.","DOI":"10.1145\/3178876.3186015"},{"key":"76_CR34","doi-asserted-by":"crossref","unstructured":"Penghua Z, Dingyi Z. Bidirectional-GRU based on attention mechanism for aspect-level sentiment analysis. In: Proceedings of the 2019 11th international conference on machine learning and computing. ACM; 2019. p. 86\u201390.","DOI":"10.1145\/3318299.3318368"},{"key":"76_CR35","unstructured":"Bjerva J, Plank B, Bos J. Semantic tagging with deep residual networks. CoRR J. 1609.07053. 2016."},{"key":"76_CR36","doi-asserted-by":"publisher","first-page":"78454","DOI":"10.1109\/ACCESS.2019.2920075","volume":"7","author":"J Zhou","year":"2019","unstructured":"Zhou J, Huang JX, Chen Q, Hu QV, Wang T, He L. Deep learning for aspect-level sentiment classification: survey, vision and challenges. IEEE Access. 2019;7:78454\u201383.","journal-title":"IEEE Access"},{"issue":"5","key":"76_CR37","first-page":"6261","volume":"5","author":"A Gupte","year":"2014","unstructured":"Gupte A, Joshi S, Gadgul P, Kadam A, Gupte A. Comparative study of classification algorithms used in sentiment analysis. Int J Comput Sci Inf Technol. 2014;5(5):6261\u20134.","journal-title":"Int J Comput Sci Inf Technol"},{"issue":"1","key":"76_CR38","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1186\/s40537-015-0015-2","volume":"2","author":"X Fang","year":"2015","unstructured":"Fang X, Zhan J. Sentiment analysis using product review data. J Big Data. 2015;2(1):5.","journal-title":"J Big Data"},{"key":"76_CR39","doi-asserted-by":"publisher","first-page":"3971","DOI":"10.3233\/JIFS-169958","volume":"36","author":"D Zeng","year":"2019","unstructured":"Zeng D, Dai Y, Li F, Wang J, Sangaiah AK. Aspect based sentiment analysis by a linguistically regularized CNN with gated mechanism. J Intell Fuzzy Syst. 2019;36:3971\u201380.","journal-title":"J Intell Fuzzy Syst"},{"key":"76_CR40","doi-asserted-by":"crossref","unstructured":"Lei Z, Yang Y, Yang M, Liu Y. A multi-sentiment-resource enhanced attention network for sentiment classification. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 2: Short Papers); 2018. p. 758\u2013763.","DOI":"10.18653\/v1\/P18-2120"},{"key":"76_CR41","doi-asserted-by":"crossref","unstructured":"Li L, Liu Y, Zhou A. Hierarchical attention based position-aware network for aspect-level sentiment analysis. In: Proceedings of the 22nd conference on computational natural language learning; 2018. p. 181\u20139.","DOI":"10.18653\/v1\/K18-1018"},{"key":"76_CR42","doi-asserted-by":"crossref","unstructured":"Kumar A, Rastogi R. Attentional recurrent neural networks for sentence classification. In Innovations in infrastructure. Springer; 2019. pp. 549\u201359.","DOI":"10.1007\/978-981-13-1966-2_49"},{"key":"76_CR43","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1016\/j.knosys.2013.08.011","volume":"52","author":"A Bagheri","year":"2013","unstructured":"Bagheri A, Saraee M, De Jong F. Care more about customers: unsupervised domain-independent aspect detection for sentiment analysis of customer reviews. Knowl-Based Syst. 2013;52:201\u201313.","journal-title":"Knowl-Based Syst"},{"issue":"1","key":"76_CR44","first-page":"4","volume":"1","author":"A Khan","year":"2010","unstructured":"Khan A, Baharudin B, Lee LH, Khan K. A review of machine learning algorithms for text-documents classification. J Adv Inf Technol. 2010;1(1):4\u201320.","journal-title":"J Adv Inf Technol"},{"issue":"2","key":"76_CR45","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/j.joi.2009.01.003","volume":"3","author":"R Prabowo","year":"2009","unstructured":"Prabowo R, Thelwall M. Sentiment analysis: a combined approach. J Informetr. 2009;3(2):143\u201357.","journal-title":"J Informetr"},{"issue":"6","key":"76_CR46","doi-asserted-by":"publisher","first-page":"823","DOI":"10.1177\/0165551510388123","volume":"36","author":"TT Thet","year":"2010","unstructured":"Thet TT, Na JC, Khoo CS. Aspect-based sentiment analysis of movie reviews on discussion boards. J Inf Sci. 2010;36(6):823\u201348.","journal-title":"J Inf Sci"},{"key":"76_CR47","doi-asserted-by":"crossref","unstructured":"Ni J, Li J, McAuley J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th International joint conference on natural language processing. 2019; p. 188\u2013197.","DOI":"10.18653\/v1\/D19-1018"}],"updated-by":[{"updated":{"date-parts":[[2023,9,28]],"date-time":"2023-09-28T00:00:00Z","timestamp":1695859200000},"DOI":"10.1007\/s42979-023-02168-3","type":"correction","label":"Correction"}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-020-0076-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42979-020-0076-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-020-0076-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,28]],"date-time":"2023-09-28T13:20:28Z","timestamp":1695907228000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42979-020-0076-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3]]},"references-count":47,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2020,3]]}},"alternative-id":["76"],"URL":"https:\/\/doi.org\/10.1007\/s42979-020-0076-y","relation":{},"ISSN":["2662-995X","2661-8907"],"issn-type":[{"value":"2662-995X","type":"print"},{"value":"2661-8907","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,3]]},"assertion":[{"value":"27 November 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 February 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 March 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 September 2023","order":4,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":5,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s42979-023-02168-3","URL":"https:\/\/doi.org\/10.1007\/s42979-023-02168-3","order":7,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"74"}}