{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,13]],"date-time":"2024-02-13T20:06:57Z","timestamp":1707854817150},"reference-count":53,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2020,8,11]],"date-time":"2020-08-11T00:00:00Z","timestamp":1597104000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,8,11]],"date-time":"2020-08-11T00:00:00Z","timestamp":1597104000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"published-print":{"date-parts":[[2020,9]]},"DOI":"10.1007\/s42979-020-00272-2","type":"journal-article","created":{"date-parts":[[2020,8,11]],"date-time":"2020-08-11T13:03:48Z","timestamp":1597151028000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":17,"title":["Real-Time Automatic Seizure Detection Using Ordinary Kriging Method in an Edge-IoMT Computing Paradigm"],"prefix":"10.1007","volume":"1","author":[{"given":"Ibrahim L.","family":"Olokodana","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2959-6541","authenticated-orcid":false,"given":"Saraju P.","family":"Mohanty","sequence":"additional","affiliation":[]},{"given":"Elias","family":"Kougianos","sequence":"additional","affiliation":[]},{"given":"Oluwaseyi O.","family":"Olokodana","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,11]]},"reference":[{"key":"272_CR1","doi-asserted-by":"publisher","DOI":"10.1155\/2014\/450573","author":"N Ahammad","year":"2014","unstructured":"Ahammad N, Fathima T, Joseph P. Detection of epileptic seizure event and onset using EEG. BioMed Res Int. 2014. https:\/\/doi.org\/10.1155\/2014\/450573","journal-title":"BioMed Res Int."},{"key":"272_CR2","doi-asserted-by":"publisher","DOI":"10.1155\/2014\/730218","author":"AS Al-Fahoum","year":"2014","unstructured":"Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014. https:\/\/doi.org\/10.1155\/2014\/730218","journal-title":"ISRN Neurosci."},{"issue":"11","key":"272_CR3","doi-asserted-by":"publisher","first-page":"2728","DOI":"10.1109\/JSSC.2015.2482498","volume":"50","author":"MAB Altaf","year":"2015","unstructured":"Altaf MAB, Zhang C, Yoo J. A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J Solid-State Circ. 2015;50(11):2728\u201340.","journal-title":"IEEE J Solid-State Circ"},{"issue":"6","key":"272_CR4","doi-asserted-by":"publisher","first-page":"061907","DOI":"10.1103\/PhysRevE.64.061907","volume":"64","author":"RG Andrzejak","year":"2001","unstructured":"Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys Rev E. 2001;64(6):061907.","journal-title":"Phys Rev E"},{"key":"272_CR5","doi-asserted-by":"crossref","unstructured":"Braham H, Jemaa SB, Sayrac B, Fort G, Moulines E. Low complexity spatial interpolation for cellular coverage analysis. In: 2014 12th Int. Symp. on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), 2014; pp. 188\u2013195. IEEE","DOI":"10.1109\/WIOPT.2014.6850298"},{"key":"272_CR6","doi-asserted-by":"publisher","first-page":"647","DOI":"10.3389\/fnhum.2016.00647","volume":"10","author":"MS Caywood","year":"2017","unstructured":"Caywood MS, Roberts DM, Colombe JB, Greenwald HS, Weiland MZ. Gaussian Process Regression for predictive but interpretable machine learning models: An example of predicting mental workload across tasks. Front Hum Neurosci. 2017;10:647.","journal-title":"Front Hum Neurosci"},{"key":"272_CR7","doi-asserted-by":"crossref","unstructured":"Daoud HG, Abdelhameed AM, Bayoumi M. Automatic epileptic seizure detection based on empirical mode decomposition and deep neural network. In: 2018 IEEE 14th Int. Collq. on Sig. Proc. & Its App. (CSPA), 2018; pp. 182\u2013186. IEEE","DOI":"10.1109\/CSPA.2018.8368709"},{"key":"272_CR8","doi-asserted-by":"publisher","first-page":"18024","DOI":"10.1038\/nrdp.2018.24","volume":"4","author":"O Devinsky","year":"2018","unstructured":"Devinsky O, Vezzani A, O\u2019Brien TJ, Jette N, Scheffer IE, de Curtis M, Piero P. Epilepsy. Nat Rev Dis Primers. 2018;4:18024. https:\/\/doi.org\/10.1038\/nrdp.2018.24","journal-title":"Nat Rev Dis Primers."},{"issue":"12","key":"272_CR9","doi-asserted-by":"publisher","first-page":"2151","DOI":"10.1109\/TBME.2007.895745","volume":"54","author":"S Faul","year":"2007","unstructured":"Faul S, Gregorcic G, Boylan G, Marnane W, Lightbody G, Connolly S. Gaussian process modeling of EEG for the detection of neonatal seizures. IEEE Trans Biomed Eng. 2007;54(12):2151\u201362.","journal-title":"IEEE Trans Biomed Eng"},{"key":"272_CR10","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.seizure.2015.01.012","volume":"26","author":"O Faust","year":"2015","unstructured":"Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure. 2015;26:56\u201364.","journal-title":"Seizure"},{"key":"272_CR11","volume-title":"Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems","author":"A G\u00e9ron","year":"2017","unstructured":"G\u00e9ron A. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. Newton: O\u2019Reilly Media, Inc.; 2017."},{"issue":"1","key":"272_CR12","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1007\/s13253-009-0012-z","volume":"15","author":"R Giraldo","year":"2010","unstructured":"Giraldo R, Delicado P, Mateu J. Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Stat. 2010;15(1):66\u201382.","journal-title":"J Agric Biol Environ Stat"},{"key":"272_CR13","unstructured":"Goh C, Hamadicharef B, Henderson G, Ifeachor E. Comparison of fractal dimension algorithms for the computation of EEG biomarkers for dementia. In: Proceedings of the 2nd International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2005), pp. 2005;464\u2013471"},{"issue":"23","key":"272_CR14","doi-asserted-by":"publisher","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","volume":"101","author":"AL Goldberger","year":"2000","unstructured":"Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215\u201320.","journal-title":"Circulation"},{"issue":"6","key":"272_CR15","doi-asserted-by":"publisher","first-page":"523","DOI":"10.1016\/S0010-4825(03)00092-1","volume":"34","author":"A Kandaswamy","year":"2004","unstructured":"Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N. Neural classification of lung sounds using wavelet coefficients. Comput Biol Med. 2004;34(6):523\u201337.","journal-title":"Comput Biol Med"},{"key":"272_CR16","doi-asserted-by":"crossref","unstructured":"Kaushal G, Singh A, Jain VK. Better approach for denoising EEG signals. In: Proc. 5th Int. Conf. on Wireless Networks and Embedded Syst. (WECON), 2016; pp. 1\u20133","DOI":"10.1109\/WECON.2016.7993455"},{"key":"272_CR17","first-page":"81","volume":"2","author":"YU Khan","year":"2012","unstructured":"Khan YU, Farooq O, Sharma P. Automatic detection of seizure onset in pediatric EEG. Int J Embed Syst Appl. 2012;2:81\u20139.","journal-title":"Int J Embed Syst Appl"},{"issue":"7","key":"272_CR18","doi-asserted-by":"publisher","first-page":"1323","DOI":"10.1007\/s11760-012-0362-9","volume":"8","author":"Y Kumar","year":"2014","unstructured":"Kumar Y, Dewal M, Anand R. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Proc. 2014;8(7):1323\u201334.","journal-title":"Signal Image Video Proc"},{"issue":"36","key":"272_CR19","doi-asserted-by":"publisher","first-page":"1237","DOI":"10.21105\/joss.01237","volume":"4","author":"GR Lee","year":"2019","unstructured":"Lee GR, Gommers R, Wasilewski F, Wohlfahrt K, O\u2019Leary A. PyWavelets: a Python package for wavelet analysis. J Open Source Softw. 2019;4(36):1237.","journal-title":"J Open Source Softw"},{"issue":"3","key":"272_CR20","doi-asserted-by":"publisher","first-page":"740","DOI":"10.2514\/1.C032465","volume":"51","author":"X Liu","year":"2014","unstructured":"Liu X, Zhu Q, Lu H. Modeling multiresponse surfaces for airfoil design with multiple-output-Gaussian-process regression. J Aircr. 2014;51(3):740\u20137.","journal-title":"J Aircr"},{"key":"272_CR21","unstructured":"Manel AR, Biradar S, Shastri R. Review paper on feature extraction methods for EEG signal analysis. In: Dept. Of Electronics and Telecom. Eng, VPCOE\/Savitribi Phule University, 2015; pp. 2349\u20136967. IJEEBS"},{"key":"272_CR22","unstructured":"Marquez A, Dunn M, Ciriaco J, Farahmand F. iSeiz: A low-cost real-time seizure detection system utilizing cloud computing. In: 2017 IEEE Glob. Hum. Tech. Conf., 2017;pp. 1\u20137. IEEE"},{"key":"272_CR23","doi-asserted-by":"crossref","unstructured":"Mohanty SP, Yanambaka VP, Kougianos E, Puthal D. PUFchain: Hardware-assisted blockchain for sustainable simultaneous device and data security in the internet of everything (IoE). arXiv Computer Science 2019;1909.06496","DOI":"10.1109\/iSES47678.2019.00081"},{"issue":"7","key":"272_CR24","doi-asserted-by":"publisher","first-page":"466","DOI":"10.1038\/nrn3766","volume":"15","author":"EI Moser","year":"2014","unstructured":"Moser EI, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser MB. Grid cells and cortical representation. Nat Rev Neurosci. 2014;15(7):466.","journal-title":"Nat Rev Neurosci"},{"key":"272_CR25","doi-asserted-by":"crossref","unstructured":"Moura A, Lopez S, Obeid I, Picone J. A comparison of feature extraction methods for EEG signals. In: 2015 IEEE Sig. Proc. in Med and Bio. Symp. (SPMB), 2015;pp. 1\u20132. IEEE","DOI":"10.1109\/SPMB.2015.7405430"},{"key":"272_CR26","doi-asserted-by":"publisher","DOI":"10.1201\/9781420058079","volume-title":"Biomedical signal and image processing","author":"K Najarian","year":"2005","unstructured":"Najarian K, Splinter R. Biomedical signal and image processing. Boca Roton: CRC Press; 2005."},{"issue":"1","key":"272_CR27","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1179\/016164104773026534","volume":"26","author":"VP Nigam","year":"2004","unstructured":"Nigam VP, Graupe D. A neural-network-based detection of epilepsy. Neurol Res. 2004;26(1):55\u201360.","journal-title":"Neurol Res"},{"issue":"2","key":"272_CR28","doi-asserted-by":"publisher","first-page":"106","DOI":"10.12720\/ijeee.2.2.106-110","volume":"2","author":"SH Oh","year":"2014","unstructured":"Oh SH, Lee YR, Kim HN. A novel EEG feature extraction method using Hjorth parameter. Int J Electron Electric Eng. 2014;2(2):106\u201310.","journal-title":"Int J Electron Electric Eng"},{"key":"272_CR29","doi-asserted-by":"crossref","unstructured":"Olokodana0 IL, Mohanty SP, Kougianos E. Ordinary-kriging based real-time seizure detection in an edge computing paradigm. In: Proc. IEEE International Conference on consumer electronics (ICCE), 2020;pp. 1\u20136","DOI":"10.1109\/ICCE46568.2020.9043004"},{"key":"272_CR30","doi-asserted-by":"crossref","unstructured":"Park C, Choi G, Kim J, Kim S, Kim TJ, Min K, Jung KY, Chong J. Epileptic seizure detection for multi-channel EEG with deep convolutional neural network. In: 2018 International Conference on Electronics, Information, and Communication (ICEIC), 2018;pp. 1\u20135. IEEE","DOI":"10.23919\/ELINFOCOM.2018.8330671"},{"key":"272_CR31","unstructured":"Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Proceedings Eighth IEEE Symp. on Comp.-Based Med. Sys., 1995;pp. 212\u2013217. IEEE"},{"issue":"3","key":"272_CR32","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1109\/MCE.2019.2893674","volume":"8","author":"D Puthal","year":"2019","unstructured":"Puthal D, Mohanty SP, Bhavake SA, Morgan G, Ranjan R. Fog Computing Security Challenges and Future Directions. Energy Secur. 2019;8(3):92\u20136. https:\/\/doi.org\/10.1109\/MCE.2019.2893674.","journal-title":"Energy Secur"},{"key":"272_CR33","volume-title":"Geostatistical reservoir modeling","author":"MJ Pyrcz","year":"2014","unstructured":"Pyrcz MJ, Deutsch CV. Geostatistical reservoir modeling. Oxford: Oxford University Press; 2014."},{"key":"272_CR34","doi-asserted-by":"crossref","unstructured":"Sayeed A, Mohanty SP, Kougianos E, Yanambaka VP, Zaveri H. A robust and fast seizure detector for IoT edge. In: 2018 IEEE Int. Conf. Smart Elect. Sys. (iSES), 2018;pp. 156\u2013160. IEEE","DOI":"10.1109\/iSES.2018.00042"},{"key":"272_CR35","unstructured":"Sayeed MA, Mohanty SP, Kougianos E. cSeiz: an edge-device for accurate seizure detection and control for smart healthcare. arXiv Electrical Engineering and Systems Science 2019;1908.08130"},{"key":"272_CR36","doi-asserted-by":"crossref","unstructured":"Sayeed MA, Mohanty SP, Kougianos E, Zaveri H. A fast and accurate approach for real-time seizure detection in the IoMT. In: 2018 IEEE Int. Conf. Smart Cities (ISC2), 2018;pp. 1\u20135. IEEE","DOI":"10.1109\/ISC2.2018.8656713"},{"issue":"3","key":"272_CR37","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1109\/TCE.2019.2920068","volume":"65","author":"MA Sayeed","year":"2019","unstructured":"Sayeed MA, Mohanty SP, Kougianos E, Zaveri HP. eSeiz: an edge-device for accurate seizure detection for smart healthcare. IEEE Trans Consum Electron. 2019;65(3):379\u201387. https:\/\/doi.org\/10.1109\/TCE.2019.2920068.","journal-title":"IEEE Trans Consum Electron"},{"issue":"3","key":"272_CR38","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1109\/TCE.2019.2917895","volume":"65","author":"MA Sayeed","year":"2019","unstructured":"Sayeed MA, Mohanty SP, Kougianos E, Zaveri HP. Neuro-detect: a machine learning-based fast and accurate seizure detection system in the IoMT. IEEE Trans Consum Electron. 2019;65(3):359\u201368. https:\/\/doi.org\/10.1109\/TCE.2019.2917895.","journal-title":"IEEE Trans Consum Electron"},{"issue":"5","key":"272_CR39","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1109\/JIOT.2016.2579198","volume":"3","author":"W Shi","year":"2016","unstructured":"Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016;3(5):637\u201346. https:\/\/doi.org\/10.1109\/JIOT.2016.2579198.","journal-title":"IEEE Internet Things J"},{"key":"272_CR40","unstructured":"Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment. Ph.D. thesis, Massachusetts Institute of Technology 2009."},{"key":"272_CR41","unstructured":"Shoeb AH, Guttag JV. Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th Int. Conf. on Mach. Learning (ICML-10), 2010;pp. 975\u2013982"},{"issue":"6","key":"272_CR42","doi-asserted-by":"publisher","first-page":"a022426","DOI":"10.1101\/cshperspect.a022426","volume":"5","author":"CE Stafstrom","year":"2015","unstructured":"Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6):a022426.","journal-title":"Cold Spring Harb Perspect Med"},{"issue":"12","key":"272_CR43","doi-asserted-by":"publisher","first-page":"8659","DOI":"10.1016\/j.eswa.2010.06.065","volume":"37","author":"A Subasi","year":"2010","unstructured":"Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl. 2010;37(12):8659\u201366.","journal-title":"Expert Syst Appl"},{"key":"272_CR44","doi-asserted-by":"crossref","unstructured":"Supratak A, Li L, Guo Y. Feature extraction with stacked autoencoders for epileptic seizure detection. In: 2014 36th Annual international conference of the IEEE engineering in medicine and biology society, 2014;pp. 4184\u20134187. IEEE","DOI":"10.1109\/EMBC.2014.6944546"},{"key":"272_CR45","doi-asserted-by":"publisher","first-page":"6554","DOI":"10.1109\/ACCESS.2016.2612242","volume":"4","author":"S Supriya","year":"2016","unstructured":"Supriya S, Siuly S, Wang H, Cao J, Zhang Y. Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access. 2016;4:6554\u201366.","journal-title":"IEEE Access"},{"issue":"3","key":"272_CR46","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1007\/s10994-015-5519-7","volume":"102","author":"A Van Esbroeck","year":"2016","unstructured":"Van Esbroeck A, Smith L, Syed Z, Singh S, Karam Z. Multi-task seizure detection: addressing intra-patient variation in seizure morphologies. Mach Learn. 2016;102(3):309\u201321.","journal-title":"Mach Learn"},{"key":"272_CR47","doi-asserted-by":"publisher","DOI":"10.1155\/2017\/6043069","author":"PM Vergara","year":"2017","unstructured":"Vergara PM, de la Cal E, Villar JR, Gonz\u00e1lez VM, Sedano J. An IoT platform for epilepsy monitoring and supervising. J Sens. 2017. https:\/\/doi.org\/10.1155\/2017\/6043069","journal-title":"J Sens."},{"issue":"11","key":"272_CR48","doi-asserted-by":"publisher","first-page":"2146","DOI":"10.1109\/TNSRE.2017.2697920","volume":"25","author":"LS Vidyaratne","year":"2017","unstructured":"Vidyaratne LS, Iftekharuddin KM. Real-Time Epileptic Seizure Detection Using EEG. IEEE Trans Neural Syst Rehabil Eng. 2017;25(11):2146\u201356. https:\/\/doi.org\/10.1109\/TNSRE.2017.2697920.","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"key":"272_CR49","doi-asserted-by":"crossref","unstructured":"Wen T, Zhang Z. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification. Medicine. 2017;96(19).","DOI":"10.1097\/MD.0000000000006879"},{"key":"272_CR50","volume-title":"Gaussian processes for machine learning","author":"CK Williams","year":"2006","unstructured":"Williams CK, Rasmussen CE. Gaussian processes for machine learning. Cambridge: MIT Press; 2006."},{"issue":"6","key":"272_CR51","first-page":"47","volume":"12","author":"Y Yuan","year":"2018","unstructured":"Yuan Y, Xun G, Jia K, Zhang A. A multi-context learning approach for EEG epileptic seizure detection. BMC Syst Biol. 2018;12(6):47\u201357.","journal-title":"BMC Syst Biol"},{"issue":"1","key":"272_CR52","first-page":"6","volume":"8","author":"M Zaleshina","year":"2017","unstructured":"Zaleshina M, Zaleshin A. The Brain as A Multi-layered. Map Scales and Reference Points For Pattern Recognition in Neuroimaging. Eur J Geogr. 2017;8(1):6\u201331.","journal-title":"Eur J Geogr"},{"issue":"3","key":"272_CR53","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1109\/51.765192","volume":"18","author":"A Zapata-Ferrer","year":"1999","unstructured":"Zapata-Ferrer A, Maya LR, Gonzalez AG, Pantaleon M, Garc\u00eda MC, Nasab N, Valencia RH, Herrera MV. Detecting the onset of epileptic seizures. IEEE Eng Med Biol Mag. 1999;18(3):78\u201383.","journal-title":"IEEE Eng Med Biol Mag"}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-020-00272-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42979-020-00272-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-020-00272-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,6]],"date-time":"2022-11-06T14:31:46Z","timestamp":1667745106000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42979-020-00272-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,11]]},"references-count":53,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2020,9]]}},"alternative-id":["272"],"URL":"https:\/\/doi.org\/10.1007\/s42979-020-00272-2","relation":{},"ISSN":["2662-995X","2661-8907"],"issn-type":[{"value":"2662-995X","type":"print"},{"value":"2661-8907","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,8,11]]},"assertion":[{"value":"23 May 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 July 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 August 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with Ethical Standards"}},{"value":"The authors declare that they have no conflict of interest and there was no human or animal testing or participation involved in this research. All data were obtained from public domain sources.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}],"article-number":"258"}}