{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T16:03:02Z","timestamp":1715616182200},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["SN COMPUT. SCI."],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1007\/s42979-020-00182-3","type":"journal-article","created":{"date-parts":[[2020,5,24]],"date-time":"2020-05-24T13:02:17Z","timestamp":1590325337000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["A Multi-Optimization Technique for Improvement of Hadoop Performance with a Dynamic Job Execution Method Based on Artificial Neural Network"],"prefix":"10.1007","volume":"1","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7559-0493","authenticated-orcid":false,"given":"Rayan","family":"Alanazi","sequence":"first","affiliation":[]},{"given":"Fawaz","family":"Alhazmi","sequence":"additional","affiliation":[]},{"given":"Haejin","family":"Chung","sequence":"additional","affiliation":[]},{"given":"Yunmook","family":"Nah","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,24]]},"reference":[{"key":"182_CR1","doi-asserted-by":"crossref","unstructured":"Wang T, Wang J, Nguyen SN, Yang Z, Mi N, Sheng B. Ea2s2: an efficient application-aware storage system for big data processing in heterogeneous clusters. In: 2017 26th international conference on computer communication and networks (ICCCN). IEEE; 2017. p. 1\u20139.","DOI":"10.1109\/ICCCN.2017.8038371"},{"issue":"2","key":"182_CR2","first-page":"1","volume":"6","author":"K Subrahmanyam","year":"2017","unstructured":"Subrahmanyam K, Thanekar SA, Bagwan A. Improving Hadoop performance by enhancing name node capabilities. J Soc Technol Environ Sci. 2017;6(2):1\u20138.","journal-title":"J Soc Technol Environ Sci"},{"issue":"4","key":"182_CR3","doi-asserted-by":"publisher","first-page":"260","DOI":"10.1016\/j.dcan.2017.07.008","volume":"3","author":"M Usama","year":"2017","unstructured":"Usama M, Liu M, Chen M. Job schedulers for big data processing in Hadoop environment: testing real-life schedulers using benchmark programs. Digit Commun Netw. 2017;3(4):260\u201373.","journal-title":"Digit Commun Netw"},{"key":"182_CR4","doi-asserted-by":"crossref","unstructured":"Han S, Choi W, Muwafiq R, Nah Y. Impact of memory size on bigdata processing based on Hadoop and spark. In: Proceedings of the international conference on research in adaptive and convergent systems. ACM; 2017. p. 275\u201380.","DOI":"10.1145\/3129676.3129688"},{"key":"182_CR5","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.jpdc.2016.04.001","volume":"95","author":"PP Nghiem","year":"2016","unstructured":"Nghiem PP, Figueira SM. Towards efficient resource provisioning in MapReduce. J Parallel Distrib Comput. 2016;95:29\u201341.","journal-title":"J Parallel Distrib Comput"},{"key":"182_CR6","doi-asserted-by":"crossref","unstructured":"Wang K, Yang Y, Qiu X, Gao Z. MOSM: an approach for efficient storing massive small files on Hadoop. In: 2017 IEEE 2nd international conference on big data analysis (ICBDA). IEEE; 2017. p. 397\u2013401.","DOI":"10.1109\/ICBDA.2017.8078848"},{"key":"182_CR7","doi-asserted-by":"publisher","first-page":"304","DOI":"10.3844\/jcssp.2018.304.309","volume":"14","author":"H-G Kim","year":"2018","unstructured":"Kim H-G. Effects of design factors of HDFS on a I\/O performance. J Comput Sci. 2018;14:304\u20139.","journal-title":"J Comput Sci"},{"key":"182_CR8","first-page":"1","volume":"22","author":"H Nazini","year":"2018","unstructured":"Nazini H, Sasikala T. Simulating aircraft landing and take off scheduling in distributed framework environment using Hadoop file system. Cluster Comput. 2018;22:1\u20139.","journal-title":"Cluster Comput"},{"key":"182_CR9","first-page":"1","volume":"22","author":"X Luo","year":"2018","unstructured":"Luo X, Fu X. Configuration optimization method of Hadoop system performance based on genetic simulated annealing algorithm. Cluster Comput. 2018;22:1\u20139.","journal-title":"Cluster Comput"},{"key":"182_CR10","first-page":"1","volume":"22","author":"M Guo","year":"2018","unstructured":"Guo M. Design and realization of bank history data management system based on Hadoop 2.0. Cluster Comput. 2018;22:1\u20137.","journal-title":"Cluster Comput"},{"key":"182_CR11","unstructured":"Aydin G, Hallac IR. Distributed log analysis on the cloud using mapreduce. arXiv preprint arXiv:1802.03589. 2018."},{"issue":"4","key":"182_CR12","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1109\/TCC.2014.2338291","volume":"3","author":"Y Yao","year":"2015","unstructured":"Yao Y, Tai J, Sheng B, Mi N. LSPS: a job size-based scheduler for efficient task assignments in Hadoop. IEEE Trans Cloud Comput. 2015;3(4):411\u201324.","journal-title":"IEEE Trans Cloud Comput"},{"key":"182_CR13","doi-asserted-by":"crossref","unstructured":"Bhatnagar R. Machine learning and big data processing: a technological perspective and review. In: International conference on advanced machine learning technologies and applications. Springer; 2018. p. 468\u201378.","DOI":"10.1007\/978-3-319-74690-6_46"},{"issue":"1","key":"182_CR14","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1186\/s13638-016-0651-z","volume":"2016","author":"Q Lu","year":"2016","unstructured":"Lu Q, Li S, Zhang W, Zhang L. A genetic algorithm-based job scheduling model for big data analytics. EURASIP J Wirel Commun Netw. 2016;2016(1):152.","journal-title":"EURASIP J Wirel Commun Netw"},{"key":"182_CR15","doi-asserted-by":"publisher","first-page":"44161","DOI":"10.1109\/ACCESS.2018.2857852","volume":"6","author":"X Hua","year":"2018","unstructured":"Hua X, Huang MC, Liu P. Hadoop configuration tuning with ensemble modeling and metaheuristic optimization. IEEE Access. 2018;6:44161\u201374.","journal-title":"IEEE Access"},{"issue":"1","key":"182_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.9734\/JAMCS\/2018\/39635","volume":"27","author":"FM Ba-Alwi","year":"2018","unstructured":"Ba-Alwi FM, Ammar SM. Improved FTWeighted HashT Apriori algorithm for big data using Hadoop MapReduce model. J Adv Math Comput Sci. 2018;27(1):1\u201311.","journal-title":"J Adv Math Comput Sci"},{"key":"182_CR17","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1016\/j.compeleceng.2017.10.008","volume":"67","author":"S Singh","year":"2018","unstructured":"Singh S, Garg R, Mishra P. Performance optimization of MapReduce-based apriori algorithm on Hadoop cluster. Comput Electr Eng. 2018;67:348\u201364.","journal-title":"Comput Electr Eng"},{"key":"182_CR18","doi-asserted-by":"publisher","DOI":"10.1109\/TCC.2018.2805812","author":"M Soualhia","year":"2018","unstructured":"Soualhia M, Khomh F, Tahar S. A dynamic and failure-aware task scheduling framework for Hadoop. IEEE Trans Cloud Comput. 2018. https:\/\/doi.org\/10.1109\/TCC.2018.2805812.","journal-title":"IEEE Trans Cloud Comput"},{"key":"182_CR19","doi-asserted-by":"publisher","DOI":"10.1109\/TCC.2015.2459707","author":"J Wang","year":"2015","unstructured":"Wang J, Qiu M, Guo B, Zong Z. Phase\u2014reconfigurable shuffle optimization for Hadoop MapReduce. IEEE Trans Cloud Comput. 2015. https:\/\/doi.org\/10.1109\/TCC.2015.2459707.","journal-title":"IEEE Trans Cloud Comput"},{"key":"182_CR20","doi-asserted-by":"crossref","unstructured":"Kc K, Anyanwu K. Scheduling Hadoop jobs to meet deadlines. In: 2010 IEEE second international conference on cloud computing technology and science (CloudCom). IEEE; 2010. p. 388\u201392.","DOI":"10.1109\/CloudCom.2010.97"},{"key":"182_CR21","unstructured":"Guo Y, Wu L, Yu W, Wu B, Wang X. The improved job scheduling algorithm of Hadoop platform. arXiv preprint arXiv:1506.03004. 2015."},{"key":"182_CR22","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.procs.2016.06.043","volume":"89","author":"M Brahmwar","year":"2016","unstructured":"Brahmwar M, Kumar M, Sikka G. Tolhit\u2014a scheduling algorithm for Hadoop cluster. Proc Comput Sci. 2016;89:203\u20138.","journal-title":"Proc Comput Sci"},{"issue":"3","key":"182_CR23","doi-asserted-by":"publisher","first-page":"2166","DOI":"10.1016\/j.jpdc.2013.10.003","volume":"74","author":"R Gu","year":"2014","unstructured":"Gu R, Yang X, Yan J, Sun Y, Wang B, Yuan C, Huang Y. SHadoop: improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters. J Parallel Distrib Comput. 2014;74(3):2166\u201379.","journal-title":"J Parallel Distrib Comput"},{"key":"182_CR24","doi-asserted-by":"publisher","first-page":"1031","DOI":"10.1109\/TCC.2016.2535261","volume":"6","author":"H Alshammari","year":"2016","unstructured":"Alshammari H, Lee J, Bajwa H. H2hadoop: improving Hadoop performance using the metadata of related jobs. IEEE Trans Cloud Comput. 2016;6:1031\u201340.","journal-title":"IEEE Trans Cloud Comput"},{"key":"182_CR25","doi-asserted-by":"crossref","unstructured":"Jeon S, Chung H, Choi W, Shin H, Chun J, Kim JT, Nah Y. MapReduce tuning to improve distributed machine learning performance. In: 2018 IEEE first international conference on artificial intelligence and knowledge engineering (AIKE). IEEE; 2018. p. 198\u2013200.","DOI":"10.1109\/AIKE.2018.00045"},{"key":"182_CR26","doi-asserted-by":"crossref","unstructured":"Chung H, Nah Y. Performance comparison of distributed processing of large volume of data on top of Xen and Docker-based virtual clusters. In: International conference on database systems for advanced applications. Springer; 2017. p. 103\u201313.","DOI":"10.1007\/978-3-319-55753-3_7"},{"key":"182_CR27","doi-asserted-by":"publisher","DOI":"10.1109\/TCC.2017.2748586","author":"C-T Chen","year":"2017","unstructured":"Chen C-T, Hung L-J, Hsieh S-Y, Buyya R, Zomaya Y. Heterogeneous job allocation scheduler for Hadoop MapReduce using dynamic grouping integrated neighboring search. IEEE Trans Cloud Comput. 2017. https:\/\/doi.org\/10.1109\/TCC.2017.2748586.","journal-title":"IEEE Trans Cloud Comput"},{"key":"182_CR28","doi-asserted-by":"publisher","first-page":"194","DOI":"10.13005\/ojcst\/10.01.26","volume":"10","author":"S Sneha","year":"2017","unstructured":"Sneha S, Sebastian S. Improved fair scheduling algorithm for Hadoop clustering. Oriental J Comput Sci Technol. 2017;10:194\u2013200.","journal-title":"Oriental J Comput Sci Technol"},{"key":"182_CR29","first-page":"1","volume":"99","author":"D Choi","year":"2017","unstructured":"Choi D, Jeon M, Kim N, Lee B-D. An enhanced data-locality-aware task scheduling algorithm for Hadoop applications. IEEE Syst J. 2017;99:1\u201312.","journal-title":"IEEE Syst J"},{"issue":"6","key":"182_CR30","doi-asserted-by":"publisher","first-page":"1649","DOI":"10.1109\/TPDS.2016.2587645","volume":"28","author":"Y Guo","year":"2017","unstructured":"Guo Y, Rao J, Cheng D, Zhou X. ishuffle: improving Hadoop performance with shuffle-on-write. IEEE Trans Parallel Distrib Syst. 2017;28(6):1649\u201362.","journal-title":"IEEE Trans Parallel Distrib Syst"}],"updated-by":[{"updated":{"date-parts":[[2023,9,28]],"date-time":"2023-09-28T00:00:00Z","timestamp":1695859200000},"DOI":"10.1007\/s42979-023-02168-3","type":"correction","label":"Correction"}],"container-title":["SN Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-020-00182-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42979-020-00182-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42979-020-00182-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,28]],"date-time":"2023-09-28T13:25:44Z","timestamp":1695907544000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42979-020-00182-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":30,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2020,5]]}},"alternative-id":["182"],"URL":"https:\/\/doi.org\/10.1007\/s42979-020-00182-3","relation":{},"ISSN":["2662-995X","2661-8907"],"issn-type":[{"value":"2662-995X","type":"print"},{"value":"2661-8907","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,5]]},"assertion":[{"value":"12 July 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 April 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 May 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 September 2023","order":4,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":5,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s42979-023-02168-3","URL":"https:\/\/doi.org\/10.1007\/s42979-023-02168-3","order":7,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"184"}}