{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T05:40:31Z","timestamp":1735537231717,"version":"3.32.0"},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T00:00:00Z","timestamp":1735516800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T00:00:00Z","timestamp":1735516800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100004281","name":"Narodowe Centrum Nauki","doi-asserted-by":"publisher","award":["2020\/38\/A\/HS6\/00066"],"id":[{"id":"10.13039\/501100004281","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Comput Soc Sc"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1007\/s42001-024-00350-y","type":"journal-article","created":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T04:53:23Z","timestamp":1735534403000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Characteristics of two polarized groups in online social networks\u2019 controversial discourse"],"prefix":"10.1007","volume":"8","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8407-7034","authenticated-orcid":false,"given":"Amin","family":"Mahmoudi","sequence":"first","affiliation":[]},{"given":"Dariusz","family":"Jemielniak","sequence":"additional","affiliation":[]},{"given":"Leon","family":"Ciechanowski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,30]]},"reference":[{"key":"350_CR1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0247642","volume":"16","author":"F Germani","year":"2021","unstructured":"Germani, F., & Biller-Andorno, N. (2021). The anti-vaccination infodemic on social media: A behavioral analysis. PLoS ONE, 16, e0247642.","journal-title":"PLoS ONE"},{"key":"350_CR2","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1016\/j.puhe.2021.08.019","volume":"200","author":"D Jemielniak","year":"2021","unstructured":"Jemielniak, D., & Krempovych, Y. (2021). An analysis of AstraZeneca COVID-19 vaccine misinformation and fear mongering on twitter. Public Health, 200, 4\u20136.","journal-title":"Public Health"},{"key":"350_CR3","doi-asserted-by":"publisher","DOI":"10.37016\/mr-2020-82","author":"T Neff","year":"2021","unstructured":"Neff, T., Kaiser, J., Pasquetto, I., Jemielniak, D., Dimitrakopoulou, D., Grayson, S., Gyenes, N., Ricaurte, P., Ruiz-Soler, J., & Zhang, A. (2021). Vaccine hesitancy in online spaces: A scoping review of the research literature, 2000\u20132020. Harvard Kennedy School Misinformation Review. https:\/\/doi.org\/10.37016\/mr-2020-82","journal-title":"Harvard Kennedy School Misinformation Review"},{"key":"350_CR4","first-page":"891","volume-title":"Fake news","author":"I Khaldarova","year":"2016","unstructured":"Khaldarova, I., & Pantti, M. (2016). Fake news (pp. 891\u2013901). Journalism Practice."},{"key":"350_CR5","volume-title":"How to talk to a science denier: conversations with flat Earthers, climate deniers, and others who defy reason","author":"L McIntyre","year":"2022","unstructured":"McIntyre, L. (2022). How to talk to a science denier: conversations with flat Earthers, climate deniers, and others who defy reason. MIT Press."},{"key":"350_CR6","doi-asserted-by":"publisher","first-page":"854","DOI":"10.1177\/09636625211007013","volume":"30","author":"MD Marques","year":"2021","unstructured":"Marques, M. D., Kerr, J. R., Williams, M. N., Ling, M., & McLennan, J. (2021). Associations between conspiracism and the rejection of scientific innovations. Public understanding of science, 30, 854\u2013867.","journal-title":"Public understanding of science"},{"key":"350_CR7","doi-asserted-by":"publisher","first-page":"782","DOI":"10.1177\/1464884917710395","volume":"19","author":"M McDevitt","year":"2018","unstructured":"McDevitt, M., Parks, P., Stalker, J., Lerner, K., Benn, J., & Hwang, T. (2018). Anti-intellectualism among US students in journalism and mass communication: A cultural perspective. Journalism, 19, 782\u2013799.","journal-title":"Journalism"},{"key":"350_CR8","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0273346","volume":"17","author":"\u0141 Okruszek","year":"2022","unstructured":"Okruszek, \u0141, Piejka, A., Banasik-Jemielniak, N., & Jemielniak, D. (2022). Climate change, vaccines, GMO: The N400 effect as a marker of attitudes toward scientific issues. PLoS ONE, 17, e0273346.","journal-title":"PLoS ONE"},{"key":"350_CR9","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1080\/17524032.2017.1394893","volume":"12","author":"S Walter","year":"2018","unstructured":"Walter, S., Br\u00fcggemann, M., & Engesser, S. (2018). Echo chambers of denial: explaining user comments on climate change. Environmental Communication, 12, 204\u2013217.","journal-title":"Environmental Communication"},{"key":"350_CR10","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1080\/17524032.2020.1861048","volume":"15","author":"CW van Eck","year":"2021","unstructured":"van Eck, C. W., Mulder, B. C., & van der Linden, S. (2021). Echo chamber effects in the climate change blogosphere. Environmental Communication, 15, 145\u2013152.","journal-title":"Environmental Communication"},{"key":"350_CR11","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1177\/19401612211045221","volume":"28","author":"A Erlich","year":"2023","unstructured":"Erlich, A., & Garner, C. (2023). Is pro-Kremlin disinformation effective? Evidence from Ukraine. The International Journal of Press\/Politics, 28, 5\u201328.","journal-title":"The International Journal of Press\/Politics"},{"unstructured":"Moy, Wesley R., Kacper Gradon, & Russian Covid- Effects. (2023). COVID -19 effects and Russian disinformation campaigns. https:\/\/www.hsaj.org\/resources\/uploads\/2020\/12\/hsaj_Covid192020_COVID19EffectsRussianDisinformationCampaigns.pdf. Accessed June 26.","key":"350_CR12"},{"key":"350_CR13","doi-asserted-by":"publisher","DOI":"10.3390\/ijerph182212266","author":"BM Nowak","year":"2021","unstructured":"Nowak, B. M., Miedziarek, C., Pe\u0142czy\u0144ski, S., & Rzymski, P. (2021). Misinformation, fears and adherence to preventive measures during the early phase of COVID-19 pandemic: A cross-sectional study in Poland. International journal of environmental research and public health. https:\/\/doi.org\/10.3390\/ijerph182212266","journal-title":"International journal of environmental research and public health"},{"unstructured":"Jiang, B., Mansooreh K., Lu C., Black T., & Liu H. (2021). Mechanisms and attributes of echo chambers in social media.","key":"350_CR14"},{"unstructured":"Alatawi, F., Cheng L., Tahir A., Karami M., Jiang B., Black T., & Liu H. (2021). A Survey on echo chambers on social media: description, detection and mitigation.","key":"350_CR15"},{"key":"350_CR16","doi-asserted-by":"publisher","first-page":"117","DOI":"10.3390\/fi3020117","volume":"3","author":"S Chay","year":"2011","unstructured":"Chay, S., & Sasaki, N. (2011). Using online tools to assess public responses to climate change mitigation policies in Japan. Future Internet, 3, 117\u2013129.","journal-title":"Future Internet"},{"key":"350_CR17","first-page":"291","volume":"5","author":"MR Auer","year":"2014","unstructured":"Auer, M. R., Zhang, Y., & Lee, P. (2014). The potential of microblogs for the study of public perceptions of climate change. Wiley interdisciplinary reviews: Climate change, 5, 291\u2013296.","journal-title":"Wiley interdisciplinary reviews: Climate change"},{"key":"350_CR18","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0094785","volume":"9","author":"W Pearce","year":"2014","unstructured":"Pearce, W., Holmberg, K., Hellsten, I., & Nerlich, B. (2014). Climate change on Twitter: Topics, communities and conversations about the 2013 IPCC Working Group 1 report. PLoS ONE, 9, e94785.","journal-title":"PLoS ONE"},{"key":"350_CR19","doi-asserted-by":"publisher","first-page":"126","DOI":"10.1016\/j.gloenvcha.2015.03.006","volume":"32","author":"HTP Williams","year":"2015","unstructured":"Williams, H. T. P., McMurray, J. R., Kurz, T., & Hugo Lambert, F. (2015). Network analysis reveals open forums and echo chambers in social media discussions of climate change. Global environmental change: Human and policy dimensions, 32, 126\u2013138.","journal-title":"Global environmental change: Human and policy dimensions"},{"unstructured":"Holme, P., & Rocha J. C. (2021). Networks of climate change: Connecting causes and consequences. arXiv [physics.soc-ph]. arXiv.","key":"350_CR20"},{"key":"350_CR21","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.124.048301","volume":"124","author":"F Baumann","year":"2020","unstructured":"Baumann, F., Lorenz-Spreen, P., Sokolov, I. M., & Starnini, M. (2020). Modeling echo chambers and polarization dynamics in social networks. Physical Review Letters, 124, 048301.","journal-title":"Physical Review Letters"},{"doi-asserted-by":"crossref","unstructured":"Tyagi, A., Babcock M., Carley K. M., & Sicker D. C. (2020). Polarizing tweets on climate change. In Social, cultural, and behavioral modeling, (pp. 107\u2013117) Springer International Publishing.","key":"350_CR22","DOI":"10.1007\/978-3-030-61255-9_11"},{"key":"350_CR23","doi-asserted-by":"publisher","first-page":"2066","DOI":"10.1177\/14614448221081426","volume":"26","author":"T Neff","year":"2022","unstructured":"Neff, T., & Jemielniak, D. (2022). How do transnational public spheres emerge? Comparing news and social media networks during the Madrid climate talks. New Media & Society, 26, 2066\u20132091.","journal-title":"New Media & Society"},{"key":"350_CR24","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0136092","volume":"10","author":"EM Cody","year":"2015","unstructured":"Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate change sentiment on twitter: An unsolicited public opinion poll. PLoS ONE, 10, e0136092.","journal-title":"PLoS ONE"},{"doi-asserted-by":"publisher","unstructured":"Cinelli, M., De Francisci Morales G., Galeazzi A., Quattrociocchi W. & Starnini M. (2021). The echo chamber effect on social media. In Proceedings of the national academy of sciences of the United States of America, 118. https:\/\/doi.org\/10.1073\/pnas.2023301118","key":"350_CR25","DOI":"10.1073\/pnas.2023301118"},{"key":"350_CR26","doi-asserted-by":"publisher","first-page":"101003","DOI":"10.1088\/2515-7620\/ab491c","volume":"1","author":"L Jasny","year":"2019","unstructured":"Jasny, L., & Fisher, D. R. (2019). Echo chambers in climate science. Environmental Research Communications, 1, 101003.","journal-title":"Environmental Research Communications"},{"key":"350_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1057\/s41599-019-0344-4","volume":"5","author":"A Samantray","year":"2019","unstructured":"Samantray, A., & Pin, P. (2019). Credibility of climate change denial in social media. Palgrave Communications, 5, 1\u20138.","journal-title":"Palgrave Communications"},{"doi-asserted-by":"publisher","unstructured":"Littman, J., & Wrubel, L. (2019). Climate change tweets Ids. Harvard Dataverse. https:\/\/doi.org\/10.7910\/DVN\/5QCCUU","key":"350_CR28","DOI":"10.7910\/DVN\/5QCCUU"},{"unstructured":"Documenting the Now. (2020). Hydrator (version 0.0.11).","key":"350_CR29"},{"unstructured":"Van Rossum, G., & Drake F. L. (2009). Python 3 reference manual createSpace.","key":"350_CR30"},{"unstructured":"Peixoto, Tiago P. (2014). The graph-tool python library. Figshare.","key":"350_CR31"},{"doi-asserted-by":"crossref","unstructured":"Bastian, M., Heymann S., Jacomy M. (2009). Gephi: an open source software for exploring and manipulating networks. In Third international AAAI conference on weblogs and social media.","key":"350_CR32","DOI":"10.1609\/icwsm.v3i1.13937"},{"key":"350_CR33","doi-asserted-by":"publisher","first-page":"1711","DOI":"10.1007\/s00607-018-0684-8","volume":"101","author":"K Berahmand","year":"2019","unstructured":"Berahmand, K., Bouyer, A., & Samadi, N. (2019). A new local and multidimensional ranking measure to detect spreaders in social networks. Computing, 101, 1711\u20131733.","journal-title":"Computing"},{"key":"350_CR34","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1016\/j.neucom.2018.04.086","volume":"336","author":"C Salavati","year":"2019","unstructured":"Salavati, C., Abdollahpouri, A., & Manbari, Z. (2019). Ranking nodes in complex networks based on local structure and improving closeness centrality. Neurocomputing, 336, 36\u201345.","journal-title":"Neurocomputing"},{"key":"350_CR35","doi-asserted-by":"publisher","first-page":"2684","DOI":"10.1007\/s10489-018-01398-w","volume":"49","author":"X Rui","year":"2019","unstructured":"Rui, X., Meng, F., Wang, Z., & Yuan, G. (2019). A reversed node ranking approach for influence maximization in social networks. Applied Intelligence, 49, 2684\u20132698.","journal-title":"Applied Intelligence"},{"key":"350_CR36","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1016\/j.ins.2019.10.003","volume":"512","author":"T Wen","year":"2020","unstructured":"Wen, T., & Deng, Y. (2020). Identification of influencers in complex networks by local information dimensionality. Information sciences, 512, 549\u2013562.","journal-title":"Information sciences"},{"key":"350_CR37","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1080\/23754931.2019.1619193","volume":"5","author":"Z Chen","year":"2019","unstructured":"Chen, Z. (2019). An agent-based model for information diffusion over online social networks. Papers in Applied Geography, 5, 77\u201397.","journal-title":"Papers in Applied Geography"},{"key":"350_CR38","doi-asserted-by":"publisher","first-page":"318","DOI":"10.1016\/j.physa.2017.12.026","volume":"496","author":"L Liu","year":"2018","unstructured":"Liu, L., Bo, Qu., Chen, B., Hanjalic, A., & Wang, H. (2018). Modelling of information diffusion on social networks with applications to WeChat. Physica A: Statistical Mechanics and its Applications, 496, 318\u2013329.","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"key":"350_CR39","doi-asserted-by":"publisher","DOI":"10.1145\/2382616.2382620","author":"C Wilson","year":"2012","unstructured":"Wilson, C., Sala, A., Puttaswamy, K. P. N., & Zhao, B. Y. (2012). Beyond social graphs: User interactions in online Social networks and their implications. ACM Transactions on the Web. https:\/\/doi.org\/10.1145\/2382616.2382620","journal-title":"ACM Transactions on the Web"},{"doi-asserted-by":"crossref","unstructured":"Mislove, Alan, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks. In Proceedings of the ACM SIGCOMM Internet Measurement Conference, (pp. 29\u201342) IMC.","key":"350_CR40","DOI":"10.1145\/1298306.1298311"},{"key":"350_CR41","first-page":"1","volume":"69","author":"MEJ Newman","year":"2003","unstructured":"Newman, M. E. J., & Girvan, M. (2003). Finding and evaluating community structure in networks. Physics Review, 69, 1\u201316.","journal-title":"Physics Review"},{"key":"350_CR42","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1257\/aer.97.2.80","volume":"97","author":"H Allcott","year":"2007","unstructured":"Allcott, H., Karlan, D., M\u00f6bius, M. M., Rosenblat, T. S., & Szeidl, A. (2007). Community size and network closure. The American economic review, 97, 80\u201385.","journal-title":"The American economic review"},{"unstructured":"R: Measures of network closure. (2023). https:\/\/search.r-project.org\/CRAN\/refmans\/migraph\/html\/closure.html. Accessed June 20.","key":"350_CR43"},{"doi-asserted-by":"publisher","unstructured":"Himelboim, I. (2017). Social network analysis (Social Media). In J. Matthes, C. S. Davis, & R. F. Potter (Eds.), The International Encyclopedia of Communication Research Methods (pp. 1\u201315). John Wiley & Sons. https:\/\/doi.org\/10.1002\/9781118901731.iecrm0236","key":"350_CR44","DOI":"10.1002\/9781118901731.iecrm0236"},{"unstructured":"Santoro, N., Quattrociocchi W., Flocchini P., Casteigts A., & Amblard F. (2011). Time-varying graphs and social network analysis: Temporal indicators and metrics. In AISB 2011: Social networks and multiagent systems, (pp. 33\u201338).","key":"350_CR45"},{"key":"350_CR46","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1126\/science.298.5594.824","volume":"298","author":"R Milo","year":"2002","unstructured":"Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824\u2013827.","journal-title":"Science"},{"unstructured":"Bulmer, M. G. (1979). Principles of Statistics. Courier Corporation.","key":"350_CR47"},{"unstructured":"igraph R manual pages. (2023). https:\/\/igraph.org\/r\/html\/1.3.4\/transitivity.html. Accessed June 24.","key":"350_CR48"}],"container-title":["Journal of Computational Social Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42001-024-00350-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s42001-024-00350-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s42001-024-00350-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T05:16:18Z","timestamp":1735535778000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s42001-024-00350-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,30]]},"references-count":48,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2025,2]]}},"alternative-id":["350"],"URL":"https:\/\/doi.org\/10.1007\/s42001-024-00350-y","relation":{},"ISSN":["2432-2717","2432-2725"],"issn-type":[{"type":"print","value":"2432-2717"},{"type":"electronic","value":"2432-2725"}],"subject":[],"published":{"date-parts":[[2024,12,30]]},"assertion":[{"value":"25 May 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 December 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 December 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"The authors declare that there is no any human, animals or live human cells involved in the study.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}}],"article-number":"22"}}