{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T22:25:38Z","timestamp":1740176738110,"version":"3.37.3"},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,6,23]],"date-time":"2023-06-23T00:00:00Z","timestamp":1687478400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,6,23]],"date-time":"2023-06-23T00:00:00Z","timestamp":1687478400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001774","name":"University of Sydney","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100001774","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Data Sci Anal"],"published-print":{"date-parts":[[2024,5]]},"abstract":"Abstract<\/jats:title>Structural health monitoring (SHM) provides an economic approach which aims to enhance understanding the behavior of structures by continuously collecting data through multiple networked sensors attached to the structure. These data are then utilized to gain insight into the health of a structure and make timely and economic decisions about its maintenance. The generated SHM sensing data are non-stationary and exist in a correlated multi-way form which makes the batch\/off-line learning and standard two-way matrix analysis unable to capture all of these correlations and relationships. In this sense, the online tensor data analysis has become an essential tool for capturing underlying structures in higher-order datasets stored in a tensor $${\\mathcal {X}} \\in {\\mathbb {R}} ^{I_1 \\times \\cdots \\times I_N} $$<\/jats:tex-math>\n \n X<\/mml:mi>\n \u2208<\/mml:mo>\n \n \n R<\/mml:mi>\n <\/mml:mrow>\n \n \n I<\/mml:mi>\n 1<\/mml:mn>\n <\/mml:msub>\n \u00d7<\/mml:mo>\n \u22ef<\/mml:mo>\n \u00d7<\/mml:mo>\n \n I<\/mml:mi>\n N<\/mml:mi>\n <\/mml:msub>\n <\/mml:mrow>\n <\/mml:msup>\n <\/mml:mrow>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>. The CANDECOMP\/PARAFAC (CP) decomposition has been extensively studied and applied to approximate X by N loading matrices $$A(1),\\ldots ,A(N)$$<\/jats:tex-math>\n \n A<\/mml:mi>\n (<\/mml:mo>\n 1<\/mml:mn>\n )<\/mml:mo>\n ,<\/mml:mo>\n \u2026<\/mml:mo>\n ,<\/mml:mo>\n A<\/mml:mi>\n (<\/mml:mo>\n N<\/mml:mi>\n )<\/mml:mo>\n <\/mml:mrow>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> where N<\/jats:italic> represents the order of the tensor. We propose a novel algorithm, FP-CPD, to parallelize the CANDECOMP\/PARAFAC (CP) decomposition of a tensor $${\\mathcal {X}} \\in {\\mathbb {R}} ^{I_1 \\times \\cdots \\times I_N} $$<\/jats:tex-math>\n \n X<\/mml:mi>\n \u2208<\/mml:mo>\n \n \n R<\/mml:mi>\n <\/mml:mrow>\n \n \n I<\/mml:mi>\n 1<\/mml:mn>\n <\/mml:msub>\n \u00d7<\/mml:mo>\n \u22ef<\/mml:mo>\n \u00d7<\/mml:mo>\n \n I<\/mml:mi>\n N<\/mml:mi>\n <\/mml:msub>\n <\/mml:mrow>\n <\/mml:msup>\n <\/mml:mrow>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>. Our approach is based on stochastic gradient descent (SGD) algorithm which allows us to parallelize the learning process, and it is very useful in online setting since it updates $${\\mathcal {X}}^{t+1}$$<\/jats:tex-math>\n \n \n X<\/mml:mi>\n <\/mml:mrow>\n \n t<\/mml:mi>\n +<\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n <\/mml:msup>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> in one single step. Our SGD algorithm is augmented with Nesterov\u2019s accelerated gradient and perturbation methods to accelerate and guarantee convergence. The experimental results using laboratory-based and real-life structural datasets indicate fast convergence and good scalability.<\/jats:p>","DOI":"10.1007\/s41060-023-00402-y","type":"journal-article","created":{"date-parts":[[2023,6,23]],"date-time":"2023-06-23T20:30:50Z","timestamp":1687552250000},"page":"359-371","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["A fast parallel tensor decomposition with optimal stochastic gradient descent: an application in structural damage identification"],"prefix":"10.1007","volume":"17","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8864-0314","authenticated-orcid":false,"given":"Ali","family":"Anaissi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2674-0253","authenticated-orcid":false,"given":"Basem","family":"Suleiman","sequence":"additional","affiliation":[]},{"given":"Widad","family":"Alyassine","sequence":"additional","affiliation":[]},{"given":"Seid Miad","family":"Zandavi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,23]]},"reference":[{"issue":"1","key":"402_CR1","doi-asserted-by":"publisher","first-page":"6","DOI":"10.1109\/TKDE.2008.112","volume":"21","author":"E Acar","year":"2009","unstructured":"Acar, E., Yener, B.: Unsupervised multiway data analysis: A literature survey. IEEE Trans. Knowl. Data Eng. 21(1), 6\u201320 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"402_CR2","doi-asserted-by":"crossref","unstructured":"Anaissi, A., Braytee, A., Naji, M.: Gaussian kernel parameter optimization in one-class support vector machines. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2018)","DOI":"10.1109\/IJCNN.2018.8489383"},{"issue":"1","key":"402_CR3","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/s13349-019-00323-0","volume":"9","author":"A Anaissi","year":"2019","unstructured":"Anaissi, A., Khoa, N.L.D., Rakotoarivelo, T., Alamdari, M.M., Wang, Y.: Smart pothole detection system using vehicle-mounted sensors and machine learning. J. Civ. Struct. Heal. Monit. 9(1), 91\u2013102 (2019)","journal-title":"J. Civ. Struct. Heal. Monit."},{"key":"402_CR4","doi-asserted-by":"crossref","unstructured":"Anaissi, A., Lee, Y., Naji, M.: Regularized tensor learning with adaptive one-class support vector machines. In: International Conference on Neural Information Processing, pp. 612\u2013624. Springer, Berlin (2018)","DOI":"10.1007\/978-3-030-04182-3_54"},{"issue":"1","key":"402_CR5","doi-asserted-by":"publisher","first-page":"111","DOI":"10.3390\/s18010111","volume":"18","author":"A Anaissi","year":"2018","unstructured":"Anaissi, A., Makki Alamdari, M., Rakotoarivelo, T., Khoa, N.: A tensor-based structural damage identification and severity assessment. Sensors 18(1), 111 (2018)","journal-title":"Sensors"},{"issue":"5","key":"402_CR6","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1002\/cem.801","volume":"17","author":"R Bro","year":"2003","unstructured":"Bro, R., Kiers, H.A.L.: A new efficient method for determining the number of components in parafac models. J. Chemom. 17(5), 274\u2013286 (2003)","journal-title":"J. Chemom."},{"key":"402_CR7","doi-asserted-by":"crossref","unstructured":"Cerda, F., Garrett, J., Bielak, J., Rizzo, P., Barrera, J.A., Zhang, Z., Chen, S., McCann, M.T., Kovacevic, J.: Indirect structural health monitoring in bridges: scale experiments. In: Proceedings of International Conference on Bridge Maintenance, Safety and Management, Lago di Como, pp. 346\u2013353 (2012)","DOI":"10.1201\/b12352-43"},{"issue":"1","key":"402_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2668133","volume":"6","author":"W-S Chin","year":"2015","unstructured":"Chin, W.-S., Zhuang, Y., Juan, Y.-C., Lin, C.-J.: A fast parallel stochastic gradient method for matrix factorization in shared memory systems. ACM Trans. Intell. Syst. Technol. (TIST) 6(1), 1\u201324 (2015)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"issue":"2","key":"402_CR9","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1109\/MSP.2013.2297439","volume":"32","author":"A Cichocki","year":"2015","unstructured":"Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., PHAN, H.A.: Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145\u2013163 (2015)","journal-title":"IEEE Signal Process. Mag."},{"key":"402_CR10","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/j.jneumeth.2015.03.018","volume":"248","author":"F Cong","year":"2015","unstructured":"Cong, F., Lin, Q.-H., Kuang, L.-D., Gong, X.-F., Astikainen, P., Ristaniemi, T.: Tensor decomposition of EEG signals: a brief review. J. Neurosci. Methods 248, 59\u201369 (2015)","journal-title":"J. Neurosci. Methods"},{"key":"402_CR11","unstructured":"De\u00a0Lathauwer, L., De\u00a0Moor, B.: From matrix to tensor: multilinear algebra and signal processing, pp. 1\u201311 (1996)"},{"issue":"3","key":"402_CR12","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1137\/0717028","volume":"17","author":"L Eld\u00e9n","year":"1980","unstructured":"Eld\u00e9n, L.: Perturbation theory for the least squares problem with linear equality constraints. SIAM J. Numer. Anal. 17(3), 338\u2013350 (1980)","journal-title":"SIAM J. Numer. Anal."},{"key":"402_CR13","unstructured":"Ge, R., Huang, F., Jin, C., Yuan, Y.: Escaping from saddle points-online stochastic gradient for tensor decomposition. In: Conference on Learning Theory, pp. 797\u2013842 (2015)"},{"key":"402_CR14","doi-asserted-by":"crossref","unstructured":"Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factorization with distributed stochastic gradient descent. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 69\u201377 (2011)","DOI":"10.1145\/2020408.2020426"},{"issue":"1\u20132","key":"402_CR15","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1007\/s10107-015-0871-8","volume":"156","author":"S Ghadimi","year":"2016","unstructured":"Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156(1\u20132), 59\u201399 (2016)","journal-title":"Math. Program."},{"issue":"6","key":"402_CR16","doi-asserted-by":"publisher","first-page":"2882","DOI":"10.1109\/TSP.2012.2190406","volume":"60","author":"N Guan","year":"2012","unstructured":"Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Signal Process. 60(6), 2882\u20132898 (2012)","journal-title":"IEEE Trans. Signal Process."},{"key":"402_CR17","doi-asserted-by":"crossref","unstructured":"Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: Gigatensor: Scaling tensor analysis up by 100 times-algorithms and discoveries. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201912, pp. 316\u2013324, New York, NY, USA. Association for Computing Machinery (2012)","DOI":"10.1145\/2339530.2339583"},{"key":"402_CR18","doi-asserted-by":"crossref","unstructured":"Kaya, O., U\u00e7ar, B.: Scalable sparse tensor decompositions in distributed memory systems. In: SC \u201915: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1\u201311 (2015)","DOI":"10.1145\/2807591.2807624"},{"key":"402_CR19","doi-asserted-by":"crossref","unstructured":"Khoa, N.L.D., Anaissi, A., Wang, Y.: Smart infrastructure maintenance using incremental tensor analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 959\u2013967. ACM (2017)","DOI":"10.1145\/3132847.3132851"},{"key":"402_CR20","doi-asserted-by":"crossref","unstructured":"Khoa, N.L.D., Anaissi, A., Wang, Y.: Smart infrastructure maintenance using incremental tensor analysis: extended abstract. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM \u201917, pp. 959\u2013967, New York, NY, USA. Association for Computing Machinery (2017)","DOI":"10.1145\/3132847.3132851"},{"key":"402_CR21","doi-asserted-by":"crossref","unstructured":"Kody, A., Li, X., Moaveni, B.: Identification of physically simulated damage on a footbridge based on ambient vibration data. In: Structures Congress 2013: Bridging Your Passion with Your Profession, pp. 352\u2013362 (2013)","DOI":"10.1061\/9780784412848.032"},{"issue":"3","key":"402_CR22","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1137\/07070111X","volume":"51","author":"TG Kolda","year":"2009","unstructured":"Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455\u2013500 (2009)","journal-title":"SIAM Rev."},{"key":"402_CR23","doi-asserted-by":"crossref","unstructured":"Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: 2008 Eighth IEEE International Conference on Data Mining. IEEE, pp. 363\u2013372 (2008)","DOI":"10.1109\/ICDM.2008.89"},{"key":"402_CR24","unstructured":"Larson, A.C., Von\u00a0Dreele, R.B.: Los alamos national laboratory report no. Technical report, LA-UR-86-748 (1987)"},{"key":"402_CR25","unstructured":"Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint arXiv:1412.6553 (2014)"},{"key":"402_CR26","doi-asserted-by":"crossref","unstructured":"Maehara, T., Hayashi, K., Kawarabayashi, K.: Expected tensor decomposition with stochastic gradient descent. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)","DOI":"10.1609\/aaai.v30i1.10292"},{"key":"402_CR27","volume-title":"Introductory Lectures on Convex Optimization: A Basic Course","author":"Y Nesterov","year":"2013","unstructured":"Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2013)"},{"key":"402_CR28","unstructured":"Nitanda, A.: Stochastic proximal gradient descent with acceleration techniques. In: Advances in Neural Information Processing Systems, pp. 1574\u20131582 (2014)"},{"issue":"2","key":"402_CR29","first-page":"16","volume":"8","author":"EE Papalexakis","year":"2017","unstructured":"Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion: models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. (TIST) 8(2), 16 (2017)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"key":"402_CR30","doi-asserted-by":"crossref","unstructured":"Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201909, pp. 727\u2013736, New York, NY, USA. Association for Computing Machinery (2009)","DOI":"10.1145\/1557019.1557100"},{"key":"402_CR31","doi-asserted-by":"crossref","unstructured":"Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727\u2013736. ACM (2009)","DOI":"10.1145\/1557019.1557100"},{"key":"402_CR32","doi-asserted-by":"crossref","unstructured":"Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81\u201390. ACM (2010)","DOI":"10.1145\/1718487.1718498"},{"key":"402_CR33","unstructured":"Rytter, A.: Vibrational Based Inspection of Civil Engineering Structures. Ph.D. thesis, Dept. of Building Technology and Structural Engineering, Aalborg University (1993)"},{"key":"402_CR34","doi-asserted-by":"crossref","unstructured":"Schimbinschi, F., Nguyen, X.V., Bailey, J., Leckie, C., Vu, H., Kotagiri, R.: Traffic forecasting in complex urban networks: Leveraging big data and machine learning. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 1019\u20131024. IEEE (2015)","DOI":"10.1109\/BigData.2015.7363854"},{"key":"402_CR35","unstructured":"Sch\u00f6lkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, pp. 582\u2013588 (2000)"},{"key":"402_CR36","doi-asserted-by":"crossref","unstructured":"Smith, S., Ravindran, N., Sidiropoulos, N.\u00a0D., Karypis, G.: Splatt: Efficient and parallel sparse tensor-matrix multiplication. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 61\u201370 (2015)","DOI":"10.1109\/IPDPS.2015.27"},{"issue":"3","key":"402_CR37","first-page":"11","volume":"2","author":"J Sun","year":"2008","unstructured":"Sun, J., Tao, D., Papadimitriou, S., Philip S, Yu., Faloutsos, C.: Incremental tensor analysis: theory and applications. ACM Trans. Knowl. Discov. Data (TKDD) 2(3), 11 (2008)","journal-title":"ACM Trans. Knowl. Discov. Data (TKDD)"},{"key":"402_CR38","doi-asserted-by":"crossref","unstructured":"Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 43\u201350. ACM (2008)","DOI":"10.1145\/1454008.1454017"},{"issue":"1851","key":"402_CR39","doi-asserted-by":"publisher","first-page":"515","DOI":"10.1098\/rsta.2006.1938","volume":"365","author":"K Worden","year":"2006","unstructured":"Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 515\u2013537 (2006)","journal-title":"Philos. Trans. R. Soc. A Math. Phys. Eng. Sci."},{"key":"402_CR40","unstructured":"Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.-M., Liu, T.-Y.: Asynchronous stochastic gradient descent with delay compensation. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 4120\u20134129. JMLR. org (2017)"},{"key":"402_CR41","doi-asserted-by":"crossref","unstructured":"Zhou, S., Vinh, N.X., Bailey, J., Jia, Y., Davidson, I.: Accelerating online cp decompositions for higher order tensors. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1375\u20131384. ACM (2016)","DOI":"10.1145\/2939672.2939763"},{"key":"402_CR42","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the netflix prize. In: International Conference on Algorithmic Applications in Management, pp. 337\u2013348. Springer, Berlin (2008)","DOI":"10.1007\/978-3-540-68880-8_32"}],"container-title":["International Journal of Data Science and Analytics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s41060-023-00402-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s41060-023-00402-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s41060-023-00402-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T06:30:45Z","timestamp":1715322645000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s41060-023-00402-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,23]]},"references-count":42,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2024,5]]}},"alternative-id":["402"],"URL":"https:\/\/doi.org\/10.1007\/s41060-023-00402-y","relation":{},"ISSN":["2364-415X","2364-4168"],"issn-type":[{"type":"print","value":"2364-415X"},{"type":"electronic","value":"2364-4168"}],"subject":[],"published":{"date-parts":[[2023,6,23]]},"assertion":[{"value":"7 July 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 June 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 June 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}