{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T21:43:54Z","timestamp":1709329434617},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2017,2,23]],"date-time":"2017-02-23T00:00:00Z","timestamp":1487808000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Data Sci Anal"],"published-print":{"date-parts":[[2017,5]]},"DOI":"10.1007\/s41060-017-0043-4","type":"journal-article","created":{"date-parts":[[2017,2,22]],"date-time":"2017-02-22T22:17:00Z","timestamp":1487801820000},"page":"183-212","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Fading histograms in detecting distribution and concept changes"],"prefix":"10.1007","volume":"3","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5717-1415","authenticated-orcid":false,"given":"Raquel","family":"Sebasti\u00e3o","sequence":"first","affiliation":[]},{"given":"Jo\u00e3o","family":"Gama","sequence":"additional","affiliation":[]},{"given":"Teresa","family":"Mendon\u00e7a","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,2,23]]},"reference":[{"issue":"5","key":"43_CR1","first-page":"311","volume":"9","author":"D Ayres-de Campos","year":"2000","unstructured":"Ayres-de Campos, D., Bernardes, J., Garrido, A., Marquesde-de S\u00e0, J., Pereira-Leite, L.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Matern. Fetal Med. 9(5), 311\u2013318 (2000)","journal-title":"J. Matern. Fetal Med."},{"key":"43_CR2","doi-asserted-by":"publisher","unstructured":"Ayres-de Campos, D., Sousa, P., Costa, A., Bernardes, J.: Omniview-SisPorto 3.5\u2014a central fetal monitoring station with online alerts based on computerized cardiotocogram+ST event analysis. J. Perinatal Med. 36(3):260\u2013264. doi: 10.1515\/JPM.2008.030 , http:\/\/www.ncbi.nlm.nih.gov\/pubmed\/18576938 (2008)","DOI":"10.1515\/JPM.2008.030"},{"key":"43_CR3","doi-asserted-by":"publisher","unstructured":"Bach, S., Maloof, M.: Paired learners for concept drift. In: Eighth IEEE International Conference on Data Mining, 2008. ICDM \u201908, pp. 23\u201332 (2008). doi: 10.1109\/ICDM.2008.119","DOI":"10.1109\/ICDM.2008.119"},{"key":"43_CR4","unstructured":"Baena-Garc\u00eda, M., Campo-\u00c1vila, J.D., Fidalgo, R., Bifet, A., Gavald\u00e0, R., Morales-Bueno, R.: Early drift detection method. In: In 4th ECML PKDD International Workshop on Knowledge Discovery from Data Streams, pp. 77\u201386 (2006)"},{"key":"43_CR5","volume-title":"Detection of Abrupt Changes: Theory and Applications","author":"M Basseville","year":"1993","unstructured":"Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993)"},{"key":"43_CR6","doi-asserted-by":"crossref","unstructured":"Berthold, M., Hand, D.J. (eds.): Intelligent Data Analysis: An Introduction, 1st edn. Springer, New York, Inc., Secaucus, NJ, USA (1999)","DOI":"10.1007\/978-3-662-03969-4"},{"key":"43_CR7","doi-asserted-by":"publisher","unstructured":"Bifet, A., Gavald\u00e0, R.: Learning from time-changing data with adaptive windowing. In: In SIAM International Conference on Data Mining, Berlin, Heidelberg (2007)","DOI":"10.1137\/1.9781611972771.42"},{"key":"43_CR8","first-page":"1601","volume":"11","author":"A Bifet","year":"2010","unstructured":"Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis. J. Mach. Learn. Res. 11, 1601\u20131604 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"43_CR9","unstructured":"Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query processing using wavelets. In: Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., Whang, K.Y. (Eds.) VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, September 10\u201314, 2000, Cairo, Egypt, Morgan Kaufmann, pp. 111\u2013122 (2000)"},{"issue":"1","key":"43_CR10","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.jalgor.2003.12.001","volume":"55","author":"G Cormode","year":"2005","unstructured":"Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. J Algorithms 55(1), 58\u201375 (2005). doi: 10.1016\/j.jalgor.2003.12.001","journal-title":"J Algorithms"},{"issue":"1","key":"43_CR11","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1145\/1061318.1061325","volume":"30","author":"G Cormode","year":"2005","unstructured":"Cormode, G., Muthukrishnan, S.: What\u2019s hot and what\u2019s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249\u2013278 (2005). doi: 10.1145\/1061318.1061325","journal-title":"ACM Trans. Database Syst."},{"key":"43_CR12","doi-asserted-by":"publisher","unstructured":"Correa, M., Bielza, C., Pamies-Teixeira, J.: Comparison of bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3):7270\u20137279. http:\/\/dblp.uni-trier.de\/db\/journals\/eswa\/eswa36.html#CorreaBP09 (2009)","DOI":"10.1016\/j.eswa.2008.09.024"},{"key":"43_CR13","unstructured":"Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach to detecting changes in multi-dimensional data streams. In: Proceedings of the Symposium on the Interface of Statistics, Computing Science, and Applications (2006)"},{"key":"43_CR14","doi-asserted-by":"publisher","DOI":"10.1201\/EBK1439826119","volume-title":"Knowledge Discovery from Data Streams","author":"J Gama","year":"2010","unstructured":"Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman & Hall\/CRC, London (2010)","edition":"1"},{"key":"43_CR15","doi-asserted-by":"publisher","unstructured":"Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection. In: In SBIA Brazilian Symposium on Artificial Intelligence, Springer Verlag, pp. 286\u2013295 (2004)","DOI":"10.1007\/978-3-540-28645-5_29"},{"issue":"3","key":"43_CR16","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1007\/s10994-012-5320-9","volume":"90","author":"J Gama","year":"2013","unstructured":"Gama, J., Sebasti\u00e3o, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317\u2013346 (2013)","journal-title":"Mach. Learn."},{"key":"43_CR17","unstructured":"Gao, J., Fan, W., Han, J., Yu, P.S.: A general framework for mining concept-drifting data streams with skewed distributions. In: In Proceedings of SDM\u201907, pp. 3\u201314. http:\/\/citeseerx.ist.psu.edu\/viewdoc\/summary?doi=10.1.1.74.3098 (2007)"},{"issue":"3","key":"43_CR18","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1109\/TKDE.2003.1198389","volume":"15","author":"AC Gilbert","year":"2003","unstructured":"Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: One-pass wavelet decompositions of data streams. IEEE Trans. Knowl. Data Eng. 15(3), 541\u2013554 (2003). doi: 10.1109\/TKDE.2003.1198389","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"9","key":"43_CR19","doi-asserted-by":"publisher","first-page":"585","DOI":"10.1016\/j.earlhumdev.2006.12.006","volume":"83","author":"H Gon\u00e7alves","year":"2007","unstructured":"Gon\u00e7alves, H., Bernardes, J., Paula\u00a0Rocha, A., Ayres-de Campos, D.: Linear and nonlinear analysis of heart rate patterns associated with fetal behavioral states in the antepartum period. Early Hum. Dev. 83(9), 585\u2013591 (2007)","journal-title":"Early Hum. Dev."},{"key":"43_CR20","doi-asserted-by":"crossref","unstructured":"Guha, S., Shim, K., Woo, J.: Rehist: Relative error histogram construction algorithms. In: Proceedings of the 30th International Conference on. Very Large Data Bases, pp. 300\u2013311 (2004)","DOI":"10.1016\/B978-012088469-8\/50029-2"},{"issue":"1","key":"43_CR21","doi-asserted-by":"publisher","first-page":"396","DOI":"10.1145\/1132863.1132873","volume":"31","author":"S Guha","year":"2006","unstructured":"Guha, S., Koudas, N., Shim, K.: Approximation and streaming algorithms for histogram construction problems. ACM Trans. Database Syst. 31(1), 396\u2013438 (2006). doi: 10.1145\/1132863.1132873","journal-title":"ACM Trans. Database Syst."},{"key":"43_CR22","doi-asserted-by":"crossref","unstructured":"Ioannidis, Y.: The history of histograms (abridged). In: Proceedings of the 29th International Conference on Very Large Data Bases\u2014Volume 29, VLDB Endowment, VLDB \u201903, pp. 19\u201330. http:\/\/dl.acm.org\/citation.cfm?id=1315451.1315455 (2003)","DOI":"10.1016\/B978-012722442-8\/50011-2"},{"key":"43_CR23","unstructured":"Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.C., Suel, T.: Optimal histograms with quality guarantees. In: Proceedings of the 24rd International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, VLDB \u201998, pp. 275\u2013286. http:\/\/dl.acm.org\/citation.cfm?id=645924.671191 (1998)"},{"key":"43_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1386118.1386124","volume":"33","author":"P Karras","year":"2008","unstructured":"Karras, P., Mamoulis, N.: Hierarchical synopses with optimal error guarantees. ACM Trans. Database Syst. 33, 1\u201353 (2008). doi: 10.1145\/1386118.1386124","journal-title":"ACM Trans. Database Syst."},{"key":"43_CR25","doi-asserted-by":"crossref","unstructured":"Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth international conference on Very large data bases\u2014Volume 30, VLDB Endowment, VLDB \u201904, pp. 180\u2013191. http:\/\/dl.acm.org\/citation.cfm?id=1316689.1316707 (2004)","DOI":"10.1016\/B978-012088469-8.50019-X"},{"key":"43_CR26","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1214\/aoms\/1177729694","volume":"22","author":"S Kullback","year":"1951","unstructured":"Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 49\u201386 (1951)","journal-title":"Ann. Math. Stat."},{"key":"43_CR27","unstructured":"Kuncheva, L.I.: Classifier ensembles for detecting concept change in streaming data: overview and perspectives. In: 2nd Workshop SUEMA 2008 (ECAI 2008), pp. 5\u201310. (2008)"},{"key":"43_CR28","unstructured":"Lichman, M.: UCI Machine Learning Repository. http:\/\/archive.ics.uci.edu\/ml (2013)"},{"key":"43_CR29","unstructured":"MATLAB $$\\textregistered $$ \u00ae & Simulink $$\\textregistered $$ \u00ae . Student Version R2007a. The MathWorks Inc., Natick, Massachusetts (2007)"},{"key":"43_CR30","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/0167-6423(82)90012-0","volume":"2","author":"J Misra","year":"1982","unstructured":"Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2, 143\u2013152 (1982). doi: 10.1016\/0167-6423(82)90012-0","journal-title":"Sci. Comput. Program."},{"key":"43_CR31","volume-title":"Machine Learning","author":"TM Mitchell","year":"1997","unstructured":"Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)","edition":"1"},{"key":"43_CR32","unstructured":"Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of page-hinckley, an approach for fault detection in an agroalimentary production system. In: Control Conference, 2004. 5th Asian, vol. 2, pp. 815\u2013818 (2004)"},{"key":"43_CR33","doi-asserted-by":"crossref","unstructured":"Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Proceedings of the 10th International Conference on Discovery Science, Springer-Verlag, Berlin, Heidelberg, DS\u201907, pp. 264\u2013269. http:\/\/dl.acm.org\/citation.cfm?id=1778942.1778972 (2007)","DOI":"10.1007\/978-3-540-75488-6_27"},{"issue":"1\u20132","key":"43_CR34","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1093\/biomet\/41.1-2.100","volume":"41","author":"ES Page","year":"1954","unstructured":"Page, E.S.: Continuous inspection schemes. Biometrika 41(1\u20132), 100\u2013115 (1954). doi: 10.1093\/biomet\/41.1-2.100","journal-title":"Biometrika"},{"key":"43_CR35","doi-asserted-by":"crossref","unstructured":"Sebasti\u00e3o, R., Gama, J.: Change detection in learning histograms from data streams. In: Proceedings of the 13th Portuguese Conference on Artificial Intelligence, Springer-Verlag, Berlin, Heidelberg, EPIA\u201907, pp. 112\u2013123. http:\/\/dl.acm.org\/citation.cfm?id=1782254.1782265 (2007)","DOI":"10.1007\/978-3-540-77002-2_10"},{"key":"43_CR36","unstructured":"Sebasti\u00e3o, R., Gama, J., Mendon\u00e7a, T.: Comparing data distribution using fading histograms. In: ECAI 2014\u201421st European Conference on Artificial Intelligence, 18\u201322 August 2014, Prague, Czech Republic\u2014Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 1095\u20131096 (2014)"},{"key":"43_CR37","doi-asserted-by":"publisher","unstructured":"Sebasti\u00e3o, R., Gama, J., Mendon\u00e7a, T.: Constructing fading histograms from data streams. Prog. Artif. Intell. 3(1), 15\u201328 (2014). doi: 10.1007\/s13748-014-0050-9","DOI":"10.1007\/s13748-014-0050-9"},{"key":"43_CR38","doi-asserted-by":"publisher","unstructured":"Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, pp. 377\u2013382 (2001)","DOI":"10.1145\/502512.502568"},{"issue":"1","key":"43_CR39","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1145\/3147.3165","volume":"11","author":"JS Vitter","year":"1985","unstructured":"Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37\u201357 (1985). doi: 10.1145\/3147.3165","journal-title":"ACM Trans. Math. Softw."},{"issue":"1","key":"43_CR40","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1023\/A:1018046501280","volume":"23","author":"G Widmer","year":"1996","unstructured":"Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69\u2013101 (1996). doi: 10.1023\/A:1018046501280","journal-title":"Mach. Learn."}],"container-title":["International Journal of Data Science and Analytics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s41060-017-0043-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s41060-017-0043-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s41060-017-0043-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T20:23:52Z","timestamp":1568838232000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s41060-017-0043-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,2,23]]},"references-count":40,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2017,5]]}},"alternative-id":["43"],"URL":"https:\/\/doi.org\/10.1007\/s41060-017-0043-4","relation":{},"ISSN":["2364-415X","2364-4168"],"issn-type":[{"value":"2364-415X","type":"print"},{"value":"2364-4168","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,2,23]]}}}