{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:47:32Z","timestamp":1732038452566},"reference-count":28,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2019,7,26]],"date-time":"2019-07-26T00:00:00Z","timestamp":1564099200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,7,26]],"date-time":"2019-07-26T00:00:00Z","timestamp":1564099200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100003398","name":"Shanxi Scholarship Council of China","doi-asserted-by":"publisher","award":["2016-084"],"id":[{"id":"10.13039\/501100003398","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Shanxi Province Science and Technology Tackling Key Project","award":["201603D121006-1"]},{"name":"Shanxi Province Foundation","award":["201801D121150"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Fuzzy Syst."],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1007\/s40815-019-00697-9","type":"journal-article","created":{"date-parts":[[2019,7,26]],"date-time":"2019-07-26T18:02:48Z","timestamp":1564164168000},"page":"1870-1881","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["A Fuzzy Support Vector Machine-Enhanced Convolutional Neural Network for Recognition of Glass Defects"],"prefix":"10.1007","volume":"21","author":[{"given":"Yong","family":"Jin","sequence":"first","affiliation":[]},{"given":"Dandan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Maozhen","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhaoba","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Youxing","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,7,26]]},"reference":[{"key":"697_CR1","doi-asserted-by":"publisher","first-page":"482","DOI":"10.1016\/j.measurement.2018.09.011","volume":"131","author":"H Wenhui","year":"2019","unstructured":"Wenhui, H., Ye, W., Yi, J., Changan, Z.: Deep features based on a DCNN model for classifying imbalanced weld flaw types. Measurement 131, 482\u2013489 (2019)","journal-title":"Measurement"},{"key":"697_CR2","doi-asserted-by":"publisher","first-page":"1605","DOI":"10.1007\/s00170-014-5871-y","volume":"73","author":"D Li","year":"2014","unstructured":"Li, D., Liang, L.Q., Zhang, W.J.: Defect inspection and extraction of the mobile phone cover glass based on the principal components analysis. Int. J. Adv. Manuf. Technol. 73, 1605\u20131614 (2014)","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"697_CR3","doi-asserted-by":"publisher","first-page":"4369","DOI":"10.3390\/s18124369","volume":"18","author":"TY Liu","year":"2018","unstructured":"Liu, T.Y., Bao, J.S., Wang, J.L., Zhang, Y.M.: A hybrid CNN\u2013LSTM algorithm for online defect recognition of CO2 welding. Sensors 18, 4369 (2018)","journal-title":"Sensors"},{"key":"697_CR4","doi-asserted-by":"publisher","first-page":"1112","DOI":"10.1049\/iet-cvi.2018.5286","volume":"12","author":"K Yang","year":"2018","unstructured":"Yang, K., Sun, Z.Y., Wang, A.H., Liu, R.Z., Sun, Q.L., Wang, Y.: Deep hashing network for material defect image classification. IET Comput. Vision 12, 1112 (2018)","journal-title":"IET Comput. Vision"},{"key":"697_CR5","doi-asserted-by":"publisher","first-page":"3512","DOI":"10.3390\/s18103512","volume":"18","author":"L Gaoyang","year":"2018","unstructured":"Gaoyang, L., Xiaohua, W., Xi, L., Aijun, Y., Mingzhe, R.: Partial discharge recognition with a multi-resolution convolutional neural network. Sensors 18, 3512 (2018)","journal-title":"Sensors"},{"key":"697_CR6","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s40684-016-0039-x","volume":"3","author":"JK Park","year":"2016","unstructured":"Park, J.K., Kwon, B.K., Park, J.H.: Machine learning-based imaging system for surface defect inspection. Int. J. Precis. Eng. Manuf. Green Technol. 3, 303\u2013310 (2016)","journal-title":"Int. J. Precis. Eng. Manuf. Green Technol."},{"key":"697_CR7","doi-asserted-by":"publisher","first-page":"668","DOI":"10.1007\/978-3-319-14249-4_64","volume":"8887","author":"D Soukup","year":"2014","unstructured":"Soukup, D., Huber-Mark, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. Adv. Vis. Comput. 8887, 668\u2013677 (2014)","journal-title":"Adv. Vis. Comput."},{"key":"697_CR8","doi-asserted-by":"crossref","unstructured":"Masci, J., Meier, U., Ciresan, D.: Steel defect classification with Max-Pooling Convolutional Neural Networks. In: International Joint Conference on Neural Networks. pp. 1\u20136 (2012)","DOI":"10.1109\/IJCNN.2012.6252468"},{"key":"697_CR9","doi-asserted-by":"crossref","unstructured":"Haselmann, M., Gruber, D.: Supervised machine learning based surface inspection by synthetizing artificial defects. In: IEEE International Conference on Machine Learning & Applications. pp. 390\u2013395 (2018)","DOI":"10.1109\/ICMLA.2017.0-130"},{"key":"697_CR10","doi-asserted-by":"publisher","first-page":"e3768","DOI":"10.1002\/cpe.3768","volume":"29","author":"J Yong","year":"2017","unstructured":"Yong, J., Jialiang, W., Zhaoba, W.: Conjugate gradient neural network-based online recognition of glass defects. Concurr. Comput. Pract. Exp. 29, e3768 (2017)","journal-title":"Concurr. Comput. Pract. Exp."},{"key":"697_CR11","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1016\/j.neucom.2019.02.049","volume":"340","author":"L He","year":"2019","unstructured":"He, L., Zheng, S.X., Chen, W.: OptQuant: distributed training of neural networks with optimized quantization mechanisms. Neurocomputing 340, 233\u2013244 (2019)","journal-title":"Neurocomputing"},{"issue":"5","key":"697_CR12","doi-asserted-by":"publisher","first-page":"965","DOI":"10.1109\/TPDS.2018.2877359","volume":"30","author":"JG Chen","year":"2019","unstructured":"Chen, J.G., Li, K.L., Bilal, K.: A bi-layered parallel training architecture for large-scale convolutional neural networks. IEEE Trans. Parallel Distrib. Syst. 30(5), 965\u2013976 (2019)","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"697_CR13","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.neunet.2019.01.010","volume":"113","author":"X Wu","year":"2019","unstructured":"Wu, X., Wang, Y.X., Tang, H.J.: A structure-time parallel implementation of spike-based deep learning. Neural Netw. 113, 72\u201378 (2019)","journal-title":"Neural Netw."},{"key":"697_CR14","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.cageo.2018.12.007","volume":"124","author":"ML Liu","year":"2019","unstructured":"Liu, M.L., Grana, D.: Accelerating geostatistical seismic inversion using TensorFlow: a heterogeneous distributed deep learning framework. Comput. Geosci. 124, 37\u201345 (2019)","journal-title":"Comput. Geosci."},{"key":"697_CR15","unstructured":"Ayinde, B.O., Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1\u201311 (2017)"},{"key":"697_CR16","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2881143","author":"Y Sun","year":"2017","unstructured":"Sun, Y., Xue, B., Zhang, M.: A particle swarm optimization-based flexible convolutional auto-encoder for image classification. IEEE Trans. Neural Netw. Learn. Syst. (2017). \n https:\/\/doi.org\/10.1109\/TNNLS.2018.2881143","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"697_CR17","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1109\/LSP.2018.2879518","volume":"26","author":"SVR Dendi","year":"2018","unstructured":"Dendi, S.V.R., Dev, C., Kothari, N.: Generating image distortion maps using convolutional autoencoders with application to no reference image quality assessment. IEEE Signal Process. Lett. 26, 89\u201393 (2018)","journal-title":"IEEE Signal Process. Lett."},{"key":"697_CR18","first-page":"16","volume":"16","author":"YH Deng","year":"2019","unstructured":"Deng, Y.H., Sander, A., Faulstich, L., Denecke, K.: Autoencoders for learning template spectrograms in electrocorticographic signals. Artif. Intell. Med. 16, 16\u201325 (2019)","journal-title":"Artif. Intell. Med."},{"key":"697_CR19","doi-asserted-by":"publisher","first-page":"464","DOI":"10.1109\/72.991432","volume":"13","author":"CF Lin","year":"2002","unstructured":"Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13, 464\u2013471 (2002)","journal-title":"IEEE Trans. Neural Netw."},{"key":"697_CR20","doi-asserted-by":"publisher","first-page":"518","DOI":"10.1109\/TFUZZ.2003.814839","volume":"11","author":"JH Chiang","year":"2003","unstructured":"Chiang, J.H., Hao, P.Y.: A new kenel based fuzzy clustering approach support vector clustering With cell Growing. IEEE Trans. Fuzzy Syst. 11, 518\u2013527 (2003)","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"697_CR21","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1023\/A:1012406528296","volume":"46","author":"Y Lin","year":"2001","unstructured":"Lin, Y., Lee, Y., Wahba, G.: Support vector machines for classification in nonstandard situations. Mach. Learn. 46, 191\u2013202 (2001)","journal-title":"Mach. Learn."},{"key":"697_CR22","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.bspc.2017.11.007","volume":"41","author":"S Jeevakala","year":"2018","unstructured":"Jeevakala, S., Therese, A.B.: Sharpening enhancement technique for MR images to enhance the segmentation. Biomed. Signal Process. Control 41, 21\u201330 (2018)","journal-title":"Biomed. Signal Process. Control"},{"key":"697_CR23","doi-asserted-by":"publisher","first-page":"5547","DOI":"10.1007\/s11042-017-4466-7","volume":"77","author":"P Ravisankar","year":"2017","unstructured":"Ravisankar, P., Sharmila, T.S., Rajendran, V.: Acoustic image enhancement using Gaussian and laplacian pyramid\u2014a multiresolution based technique. Multimedia Tools Appl. 77, 5547\u20135561 (2017)","journal-title":"Multimedia Tools Appl."},{"key":"697_CR24","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1002\/ima.22272","volume":"28","author":"B Subramani","year":"2019","unstructured":"Subramani, B., Veluchamy, M.: MRI brain image enhancement using brightness preserving adaptive fuzzy histogram equalization. Int. J. Imaging Syst. Technol. 28, 217\u2013222 (2019)","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"697_CR25","doi-asserted-by":"publisher","first-page":"1617","DOI":"10.1049\/iet-ipr.2017.1088","volume":"12","author":"A Paul","year":"2019","unstructured":"Paul, A., Bhattacharya, P., Maity, S.P., Bhattacharyya, B.K.: Plateau limit-based tri-histogram equalisation for image enhancement. IET Image Process. 12, 1617\u20131625 (2019)","journal-title":"IET Image Process."},{"key":"697_CR26","doi-asserted-by":"publisher","first-page":"7285","DOI":"10.1016\/j.eswa.2015.05.037","volume":"42","author":"MS Savic","year":"2015","unstructured":"Savic, M.S., Peric, Z.H., Simic, N.: Coding algorithm for grayscale images based on Linear Prediction and dual mode quantization. Expert Syst. Appl. 42, 7285\u20137291 (2015)","journal-title":"Expert Syst. Appl."},{"key":"697_CR27","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1016\/j.jart.2016.09.001","volume":"14","author":"VM Jimenez-Fernandez","year":"2016","unstructured":"Jimenez-Fernandez, V.M., Vazquez-Leal, H., Filobello-Nino, U.A.: Exploring the use of two-dimensional piecewise-linear functions as an alternative model for representing and processing grayscale-images. J. Appl. Res. Technol. 14, 311\u2013318 (2016)","journal-title":"J. Appl. Res. Technol."},{"key":"697_CR28","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1007\/s11760-017-1201-9","volume":"12","author":"M Kamandar","year":"2017","unstructured":"Kamandar, M.: Automatic color image contrast enhancement using Gaussian mixture modeling, piecewise linear transformation, and monotone piecewise cubic interpolant. SIViP 12, 625\u2013632 (2017)","journal-title":"SIViP"}],"container-title":["International Journal of Fuzzy Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s40815-019-00697-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s40815-019-00697-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s40815-019-00697-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,7,24]],"date-time":"2020-07-24T23:19:26Z","timestamp":1595632766000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s40815-019-00697-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7,26]]},"references-count":28,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2019,9]]}},"alternative-id":["697"],"URL":"https:\/\/doi.org\/10.1007\/s40815-019-00697-9","relation":{},"ISSN":["1562-2479","2199-3211"],"issn-type":[{"value":"1562-2479","type":"print"},{"value":"2199-3211","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,7,26]]},"assertion":[{"value":"29 January 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 July 2019","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 July 2019","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 July 2019","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}