{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T13:17:26Z","timestamp":1726147046542},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2017,7,15]],"date-time":"2017-07-15T00:00:00Z","timestamp":1500076800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Brain Inf."],"published-print":{"date-parts":[[2017,12]]},"DOI":"10.1007\/s40708-017-0069-3","type":"journal-article","created":{"date-parts":[[2017,7,15]],"date-time":"2017-07-15T04:40:40Z","timestamp":1500093640000},"page":"241-252","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":102,"title":["Emotion recognition based on EEG features in movie clips with channel selection"],"prefix":"10.1007","volume":"4","author":[{"given":"Mehmet Sira\u00e7","family":"\u00d6zerdem","sequence":"first","affiliation":[]},{"given":"Hasan","family":"Polat","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,7,15]]},"reference":[{"key":"69_CR1","unstructured":"Petrrushin V (1999) Emotion in speech: recognition and application to call centers. In: Processing of the artificial networks in engineering conference, pp 7\u201310"},{"key":"69_CR2","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1109\/TSMCB.2005.854502","volume":"36","author":"K Anderson","year":"2006","unstructured":"Anderson K, McOwan P (2006) A real-time automated system for the recognition of human facial expression. IEEE Trans Syst Man Cybern B Cybern 36:96\u2013105","journal-title":"IEEE Trans Syst Man Cybern B Cybern"},{"issue":"1","key":"69_CR3","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/S0165-0270(02)00340-0","volume":"123","author":"H Adeli","year":"2003","unstructured":"Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69\u201387","journal-title":"J Neurosci Methods"},{"issue":"7","key":"69_CR4","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/j.neucom.2013.03.027","volume":"119","author":"A Atyabi","year":"2013","unstructured":"Atyabi A, Luerssen MH, Powers DMW (2013) PSO-based dimension reduction of EEG recordings: implications for subject transfer in BCI. Neurocomputing 119(7):319\u2013331","journal-title":"Neurocomputing"},{"issue":"2","key":"69_CR5","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1109\/TITB.2009.2034649","volume":"14","author":"PC Petrantonokis","year":"2010","unstructured":"Petrantonokis PC, Hadjileontiadis LJ (2010) Emotion recognition from EEG using higher order crossing. IEEE Trans Inf Technol Biomed 14(2):186\u2013197","journal-title":"IEEE Trans Inf Technol Biomed"},{"key":"69_CR6","doi-asserted-by":"crossref","unstructured":"Khosrowbadi R, Quek HC, Wahab A, Ang KK (2010) EEG based emotion recognition using self-organizing map for boundary detection. In: International conference on pattern recognition, pp 4242\u20134245","DOI":"10.1109\/ICPR.2010.1031"},{"key":"69_CR7","doi-asserted-by":"crossref","unstructured":"Torres-Valencia C, Garcia-Arias HF, Alvarez Lopez M, Orozco-Gutierrez A (2014) Comparative analysis of physiological signals and electroencephalogram (EEG) for multimodal emotion recognition using generative models. In: 19th symposium on image, signal processing and artificial vision, Armenia-Quindio","DOI":"10.1109\/STSIVA.2014.7010181"},{"key":"69_CR8","doi-asserted-by":"crossref","first-page":"1161","DOI":"10.1037\/h0077714","volume":"39","author":"JA Russell","year":"1980","unstructured":"Russell JA (1980) A circumplex model of affect. J Personal Soc Psychol 39:1161\u20131178","journal-title":"J Personal Soc Psychol"},{"key":"69_CR9","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.neucom.2013.06.046","volume":"129","author":"XW Wang","year":"2014","unstructured":"Wang XW, Nie D, Lu BL (2014) Emotional state classification from EEG data using machine learning approach. Neurocomputing 129:94\u2013106","journal-title":"Neurocomputing"},{"key":"69_CR10","doi-asserted-by":"crossref","unstructured":"Kim J, Andre E (2006) Emotion recognition using physiological and speech signal in short-term observation. In: proceedings of the perception and interactive technologies, 4021:53\u201364","DOI":"10.1007\/11768029_6"},{"key":"69_CR11","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/S0167-8760(03)00146-6","volume":"50","author":"J Brosschot","year":"2006","unstructured":"Brosschot J, Thayer J (2006) Heart rate response is longer after negative emotions than after positive emotions. Int J Psychophysiol 50:181\u2013187","journal-title":"Int J Psychophysiol"},{"key":"69_CR12","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1007\/BF02344719","volume":"42","author":"K Kim","year":"2004","unstructured":"Kim K, Bang S, Kom S (2004) Emotion recognition system using short-term monitoring of physiological signals. Med Biol Eng Comput 42:419\u2013427","journal-title":"Med Biol Eng Comput"},{"key":"69_CR13","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.cmpb.2004.10.009","volume":"78","author":"A Suba\u015f\u0131","year":"2005","unstructured":"Suba\u015f\u0131 A, Er\u00e7elebi E (2005) Classification of EEG signals using neural network and logistic regression. Comput Methods Progr Biomed 78:87\u201399","journal-title":"Comput Methods Progr Biomed"},{"key":"69_CR14","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1016\/j.eswa.2006.02.005","volume":"32","author":"A Subas\u0131","year":"2007","unstructured":"Subas\u0131 A (2007) Signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084\u20131093","journal-title":"Expert Syst Appl"},{"key":"69_CR15","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.bspc.2014.03.007","volume":"13","author":"K Fu","year":"2014","unstructured":"Fu K, Qu J, Chai YDY (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15\u201322","journal-title":"Biomed Signal Process Control"},{"key":"69_CR16","doi-asserted-by":"crossref","unstructured":"Lopetegui E, Zapirain BG, Mendez A (2011) Tennis computer game with brain control using EEG signals. In: The 16th international conference on computer games, pp 228\u2013234","DOI":"10.1109\/CGAMES.2011.6000344"},{"issue":"2","key":"69_CR17","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/TCIAIG.2013.2242072","volume":"5","author":"R Leeb","year":"2013","unstructured":"Leeb R, Lancelle M, Kaiser V, Fellner DW, Pfurtscheller G (2013) Thinking Penguin: multimodal brain computer interface control of a VR game. IEEE Trans Comput Intell AI in Games 5(2):117\u2013128","journal-title":"IEEE Trans Comput Intell AI in Games"},{"key":"69_CR18","doi-asserted-by":"crossref","first-page":"390","DOI":"10.4236\/jbise.2010.34054","volume":"3","author":"M Murugappan","year":"2010","unstructured":"Murugappan M, Ramachandran N, Sazali Y (2010) Classification of human emotion from EEG using discrete wavelet transform. J. Biomed Sci Eng 3:390\u2013396","journal-title":"J. Biomed Sci Eng"},{"key":"69_CR19","unstructured":"Cahnel G, Kroneeg J, Grandjean D, Pun T (2005) Emotion assesstment: arousal evaluation using EEG\u2019s and peripheral physiological signals, 24 rue du genaral dufour, Geneva"},{"key":"69_CR20","doi-asserted-by":"crossref","first-page":"1302","DOI":"10.1016\/j.neucom.2008.11.007","volume":"72","author":"Q Zhang","year":"2009","unstructured":"Zhang Q, Lee M (2009) Analysis of positive and negative emotions in natural scene using brain activity and GIST. Neurocomputing 72:1302\u20131306","journal-title":"Neurocomputing"},{"key":"69_CR21","doi-asserted-by":"crossref","unstructured":"Bahrdwaj A, Gupta A, Jain P, Rani A, Yadav J (2015) Classification of human emotions from EEG signals using SVM and LDA classifiers. In: 2nd international conference on signal processing and integrated networks (SPIN), pp 180\u2013185","DOI":"10.1109\/SPIN.2015.7095376"},{"key":"69_CR22","doi-asserted-by":"crossref","first-page":"560","DOI":"10.1016\/j.neucom.2014.04.008","volume":"144","author":"G Lee","year":"2014","unstructured":"Lee G, Kwon M, Sri SK, Lee M (2014) Emotion recognition based on 3D fuzzy visual and EEG features in movie clips. Neurocomputing 144:560\u2013568","journal-title":"Neurocomputing"},{"key":"69_CR23","unstructured":"DEAP: a dataset for emotion analysis EEG physiological and video signals (2012) http:\/\/www.eecs.qmul.ac.uk\/mmv\/datasets\/deap\/index.html . Accessed 01 May 2015"},{"issue":"1","key":"69_CR24","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/T-AFFC.2011.15","volume":"3","author":"S Koelstra","year":"2012","unstructured":"Koelstra S, M\u00fchl C, Soleymani M, Lee J, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I (2012) DEAP: a database for emotion analysis using physiological signals. IEEE Trans Affect Comput 3(1):18\u201331","journal-title":"IEEE Trans Affect Comput"},{"issue":"1","key":"69_CR25","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/0005-7916(94)90063-9","volume":"25","author":"MM Bradley","year":"1994","unstructured":"Bradley MM, Lang PJ (1994) Measuring emotions: the self-assessment manikin and the sematic differential. J Behav Ther Exp Psychiatry 25(1):49\u201359","journal-title":"J Behav Ther Exp Psychiatry"},{"key":"69_CR26","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1016\/j.ijpsycho.2014.01.006","volume":"91","author":"A Uusberg","year":"2014","unstructured":"Uusberg A, Thiruchselvam R, Gross J (2014) Using distraction to regulate emotion: insights from EEG theta dynamics. Int J Psychophysiol 91:254\u2013260","journal-title":"Int J Psychophysiol"},{"key":"69_CR27","doi-asserted-by":"crossref","unstructured":"Polat H, Ozerdem MS (2015) Reflection emotions based on different stories onto EEG signal. In: 23th conference on signal processing and communications applications, Malatya, pp 2618\u20132618","DOI":"10.1109\/SIU.2015.7130424"},{"key":"69_CR28","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.jneumeth.2004.04.027","volume":"139","author":"MK K\u0131ym\u0131k","year":"2004","unstructured":"K\u0131ym\u0131k MK, Ak\u0131n M, Suba\u015f\u0131 A (2004) Automatic recognition of alertness level by using wavelet transform and artificial neural network. J Neurosci Methods 139:231\u2013240","journal-title":"J Neurosci Methods"},{"key":"69_CR29","doi-asserted-by":"crossref","first-page":"47","DOI":"10.2478\/v10136-012-0031-x","volume":"11","author":"F Amato","year":"2013","unstructured":"Amato F, Lopez A, Mendez EMP, Vanhara P, Hampl A (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11:47\u201358","journal-title":"J Appl Biomed"},{"key":"69_CR30","first-page":"906","volume-title":"Neural networks and learning machines","author":"S Haykin","year":"2009","unstructured":"Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New Jersey, p 906","edition":"3"},{"key":"69_CR31","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/S0167-7012(00)00201-3","volume":"43","author":"IA Basheer","year":"2000","unstructured":"Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals computing design and application. J Microbiol Methods 43:3\u201331","journal-title":"J Microbiol Methods"},{"key":"69_CR32","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.cmpb.2008.02.005","volume":"91","author":"LM Patnaik","year":"2008","unstructured":"Patnaik LM, Manyam OK (2008) Epileptic EEG detection using neural networks and post-classification. Comput Methods Progr Biomed 91:100\u2013109","journal-title":"Comput Methods Progr Biomed"},{"key":"69_CR33","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.chroma.2007.05.024","volume":"1158","author":"LA Berrueta","year":"2007","unstructured":"Berrueta LA, Alonso RM, Heberger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158:196\u2013214","journal-title":"J Chromatogr A"},{"key":"69_CR34","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.eswa.2015.10.049","volume":"47","author":"J Atkinson","year":"2016","unstructured":"Atkinson J, Campos D (2016) Improving BCI\u2013based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst Appl 47:35\u201341","journal-title":"Expert Syst Appl"}],"container-title":["Brain Informatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s40708-017-0069-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s40708-017-0069-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s40708-017-0069-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,30]],"date-time":"2019-09-30T06:37:24Z","timestamp":1569825444000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s40708-017-0069-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7,15]]},"references-count":34,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2017,12]]}},"alternative-id":["69"],"URL":"https:\/\/doi.org\/10.1007\/s40708-017-0069-3","relation":{},"ISSN":["2198-4018","2198-4026"],"issn-type":[{"value":"2198-4018","type":"print"},{"value":"2198-4026","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,7,15]]}}}