{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T05:27:09Z","timestamp":1732339629343,"version":"3.28.0"},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T00:00:00Z","timestamp":1732233600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T00:00:00Z","timestamp":1732233600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Comp. Appl. Math."],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1007\/s40314-024-02949-3","type":"journal-article","created":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T10:45:43Z","timestamp":1732272343000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A new simplex algorithm for interval-valued Fermatean fuzzy Linear programming problems"],"prefix":"10.1007","volume":"44","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4360-7721","authenticated-orcid":false,"given":"Rakhi","family":"Bihari","sequence":"first","affiliation":[]},{"given":"Jeevaraj","family":"S","sequence":"additional","affiliation":[]},{"given":"Ajay","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,22]]},"reference":[{"issue":"4","key":"2949_CR1","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1007\/s40314-021-01503-9","volume":"40","author":"M Akram","year":"2021","unstructured":"Akram M, Ullah I, Allahviranloo T, Edalatpanah S (2021) Fully pythagorean fuzzy linear programming problems with equality constraints. Comput Appl Math 40(4):120. https:\/\/doi.org\/10.1007\/s40314-021-01503-9","journal-title":"Comput Appl Math"},{"issue":"3","key":"2949_CR2","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1016\/S0165-0114(96)00009-7","volume":"86","author":"PP Angelov","year":"1997","unstructured":"Angelov PP (1997) Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Syst 86(3):299\u2013306. https:\/\/doi.org\/10.1016\/S0165-0114(96)00009-7","journal-title":"Fuzzy Sets Syst"},{"issue":"1","key":"2949_CR3","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1016\/S0165-0114(86)80034-3","volume":"20","author":"K Atanassov","year":"1986","unstructured":"Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87\u201396. https:\/\/doi.org\/10.1016\/S0165-0114(86)80034-3","journal-title":"Fuzzy Sets Syst"},{"issue":"1","key":"2949_CR4","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/0165-0114(89)90215-7","volume":"33","author":"KT Atanassov","year":"1989","unstructured":"Atanassov KT (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33(1):37\u201345. https:\/\/doi.org\/10.1016\/0165-0114(89)90215-7","journal-title":"Fuzzy Sets Syst"},{"key":"2949_CR5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-1870-3","volume-title":"Interval valued intuitionistic fuzzy sets","author":"KT Atanassov","year":"1999","unstructured":"Atanassov KT, Atanassov KT (1999) Interval valued intuitionistic fuzzy sets. Springer, Berlin"},{"issue":"4","key":"2949_CR6","doi-asserted-by":"publisher","first-page":"B-141","DOI":"10.1142\/9789812819789_0004","volume":"17","author":"RE Bellman","year":"1970","unstructured":"Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141. https:\/\/doi.org\/10.1142\/9789812819789_0004","journal-title":"Manag Sci"},{"issue":"01","key":"2949_CR7","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1142\/S1793005720500040","volume":"16","author":"SK Bharati","year":"2020","unstructured":"Bharati SK, Singh S (2020) Interval-valued intuitionistic fuzzy linear programming problem. New Math Nat Comput 16(01):53\u201371. https:\/\/doi.org\/10.1142\/S1793005720500040","journal-title":"New Math Nat Comput"},{"issue":"1","key":"2949_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/0165-0114(89)90084-5","volume":"32","author":"L Campos","year":"1989","unstructured":"Campos L, Verdegay JL (1989) Linear programming problems and ranking of fuzzy numbers. Fuzzy Sets Syst 32(1):1\u201311. https:\/\/doi.org\/10.1016\/0165-0114(89)90084-5","journal-title":"Fuzzy Sets Syst"},{"key":"2949_CR9","doi-asserted-by":"publisher","unstructured":"Cuong BC, Kreinovich V (2013) Picture fuzzy sets-a new concept for computational intelligence problems. In: 2013 third world congress on information and communication technologies (WICT 2013). IEEE, pp 1\u20136. https:\/\/doi.org\/10.1109\/WICT.2013.7113099","DOI":"10.1109\/WICT.2013.7113099"},{"issue":"3","key":"2949_CR10","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1007\/s10489-016-0779-x","volume":"46","author":"SK Das","year":"2017","unstructured":"Das SK, Mandal T, Edalatpanah SA (2017) A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl Intell 46(3):509\u2013519. https:\/\/doi.org\/10.1007\/s10489-016-0779-x","journal-title":"Appl Intell"},{"issue":"4","key":"2949_CR11","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1007\/s10700-017-9280-1","volume":"17","author":"A Ebrahimnejad","year":"2018","unstructured":"Ebrahimnejad A, Verdegay JL (2018) A new approach for solving fully intuitionistic fuzzy transportation problems. Fuzzy Optim Decis Mak 17(4):447\u2013474. https:\/\/doi.org\/10.1007\/s10700-017-9280-1","journal-title":"Fuzzy Optim Decis Mak"},{"issue":"5","key":"2949_CR12","doi-asserted-by":"publisher","first-page":"2333","DOI":"10.3233\/IFS-130906","volume":"26","author":"R Ezzati","year":"2014","unstructured":"Ezzati R, Khorram E, Enayati R (2014) A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. J Intell Fuzzy Syst 26(5):2333\u20132358","journal-title":"J Intell Fuzzy Syst"},{"issue":"12","key":"2949_CR13","doi-asserted-by":"publisher","first-page":"3183","DOI":"10.1016\/j.apm.2013.03.014","volume":"39","author":"R Ezzati","year":"2015","unstructured":"Ezzati R, Khorram E, Enayati R (2015) A new algorithm to solve fully fuzzy linear programming problems using the molp problem. Appl Math Model 39(12):3183\u20133193","journal-title":"Appl Math Model"},{"issue":"12","key":"2949_CR14","doi-asserted-by":"publisher","first-page":"10419","DOI":"10.1016\/j.aej.2022.03.077","volume":"61","author":"E Fathy","year":"2022","unstructured":"Fathy E (2022) A new method for solving the linear programming problem in an interval-valued intuitionistic fuzzy environment. Alex Eng J 61(12):10419\u201310432. https:\/\/doi.org\/10.1016\/j.aej.2022.03.077","journal-title":"Alex Eng J"},{"key":"2949_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.115613","volume":"185","author":"S Jeevaraj","year":"2021","unstructured":"Jeevaraj S (2021) Ordering of interval-valued fermatean fuzzy sets and its applications. Expert Syst Appl 185:115613. https:\/\/doi.org\/10.1016\/j.eswa.2021.115613","journal-title":"Expert Syst Appl"},{"key":"2949_CR16","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1007\/s10700-012-9152-7","volume":"12","author":"B Kheirfam","year":"2013","unstructured":"Kheirfam B, Verdegay JL (2013) The dual simplex method and sensitivity analysis for fuzzy linear programming with symmetric trapezoidal numbers. Fuzzy Optim Decis Mak 12:171\u2013189. https:\/\/doi.org\/10.1007\/s10700-012-9152-7","journal-title":"Fuzzy Optim Decis Mak"},{"key":"2949_CR17","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1007\/s10700-012-9129-6","volume":"11","author":"E Khorram","year":"2012","unstructured":"Khorram E, Ezzati R, Valizadeh Z (2012) Solving nonlinear multi-objective optimization problems with fuzzy relation inequality constraints regarding archimedean triangular norm compositions. Fuzzy Optim Decis Mak 11:299\u2013335","journal-title":"Fuzzy Optim Decis Mak"},{"key":"2949_CR18","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1007\/s10700-018-9287-2","volume":"18","author":"P Kundu","year":"2019","unstructured":"Kundu P, Majumder S, Kar S, Maiti M (2019) A method to solve linear programming problem with interval type-2 fuzzy parameters. Fuzzy Optim Decis Mak 18:103\u2013130. https:\/\/doi.org\/10.1007\/s10700-018-9287-2","journal-title":"Fuzzy Optim Decis Mak"},{"issue":"1","key":"2949_CR19","doi-asserted-by":"publisher","first-page":"1197","DOI":"10.3233\/JIFS-182651","volume":"37","author":"F Kutlu G\u00fcndo\u011fdu","year":"2019","unstructured":"Kutlu G\u00fcndo\u011fdu F, Kahraman C (2019) A novel Vikor method using spherical fuzzy sets and its application to warehouse site selection. J Intell Fuzzy Syst 37(1):1197\u20131211. https:\/\/doi.org\/10.3233\/JIFS-182651","journal-title":"J Intell Fuzzy Syst"},{"key":"2949_CR20","doi-asserted-by":"publisher","DOI":"10.1007\/s10700-022-09391-2","author":"L Li","year":"2022","unstructured":"Li L (2022) Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders. Fuzzy Optim Decis Mak. https:\/\/doi.org\/10.1007\/s10700-022-09391-2","journal-title":"Fuzzy Optim Decis Mak"},{"key":"2949_CR21","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1007\/s40815-015-0016-5","volume":"17","author":"A Mottaghi","year":"2015","unstructured":"Mottaghi A, Ezzati R, Khorram E (2015) A new method for solving fuzzy linear programming problems based on the fuzzy linear complementary problem (flcp). Int J Fuzzy Syst 17:236\u2013245","journal-title":"Int J Fuzzy Syst"},{"issue":"5","key":"2949_CR22","doi-asserted-by":"publisher","first-page":"444","DOI":"10.1002\/int.21790","volume":"31","author":"X Peng","year":"2016","unstructured":"Peng X, Yang Y (2016) Fundamental properties of interval-valued pythagorean fuzzy aggregation operators. Int J Intell Syst 31(5):444\u2013487. https:\/\/doi.org\/10.1002\/int.21790","journal-title":"Int J Intell Syst"},{"key":"2949_CR23","doi-asserted-by":"publisher","DOI":"10.1016\/j.rico.2021.100040","volume":"4","author":"L Sahoo","year":"2021","unstructured":"Sahoo L (2021) A new score function based fermatean fuzzy transportation problem. Results Control Optim 4:100040. https:\/\/doi.org\/10.1016\/j.rico.2021.100040","journal-title":"Results Control Optim"},{"issue":"2","key":"2949_CR24","doi-asserted-by":"publisher","first-page":"391","DOI":"10.15388\/Informatica.2019.211","volume":"30","author":"T Senapati","year":"2019","unstructured":"Senapati T, Yager RR (2019) Some new operations over fermatean fuzzy numbers and application of fermatean fuzzy wpm in multiple criteria decision making. Informatica 30(2):391\u2013412. https:\/\/doi.org\/10.15388\/Informatica.2019.211","journal-title":"Informatica"},{"key":"2949_CR25","doi-asserted-by":"publisher","first-page":"663","DOI":"10.1007\/s12652-019-01377-0","volume":"11","author":"T Senapati","year":"2020","unstructured":"Senapati T, Yager RR (2020) Fermatean fuzzy sets. J Ambient Intell Humaniz Comput 11:663\u2013674. https:\/\/doi.org\/10.1007\/s12652-019-01377-0","journal-title":"J Ambient Intell Humaniz Comput"},{"key":"2949_CR26","doi-asserted-by":"publisher","first-page":"667","DOI":"10.1007\/s10479-019-03229-8","volume":"296","author":"V Singh","year":"2021","unstructured":"Singh V, Yadav SP, Singh SK (2021) Duality theory in Atanassov\u2019s intuitionistic fuzzy mathematical programming problems: optimistic, pessimistic and mixed approaches. Ann Oper Res 296:667\u2013706. https:\/\/doi.org\/10.1007\/s10479-019-03229-8","journal-title":"Ann Oper Res"},{"issue":"3","key":"2949_CR27","doi-asserted-by":"publisher","first-page":"1069","DOI":"10.1016\/j.ejor.2022.10.046","volume":"306","author":"Z Sinuany-Stern","year":"2023","unstructured":"Sinuany-Stern Z (2023) Foundations of operations research: from linear programming to data envelopment analysis. Eur J Oper Res 306(3):1069\u20131080. https:\/\/doi.org\/10.1016\/j.ejor.2022.10.046","journal-title":"Eur J Oper Res"},{"key":"2949_CR28","doi-asserted-by":"publisher","unstructured":"Smarandache F (2019) Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set (picture fuzzy set, ternary fuzzy set), pythagorean fuzzy set, spherical fuzzy set, and q-rung orthopair fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited). J New Theory (29):1\u201331. https:\/\/doi.org\/10.48550\/arXiv.1911.07333","DOI":"10.48550\/arXiv.1911.07333"},{"key":"2949_CR29","first-page":"117","volume":"154","author":"V Subha","year":"2021","unstructured":"Subha V, Sharmila S (2021) Interval valued fermatean fuzzy interior (bi) $$\\gamma $$-hyperideals in $$\\gamma $$-hypersemigroups. World Sci News 154:117\u2013132","journal-title":"World Sci News"},{"key":"2949_CR30","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1023\/A:1022852314914","volume":"2","author":"HC Wu","year":"2003","unstructured":"Wu HC (2003) Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim Decis Mak 2:61\u201373. https:\/\/doi.org\/10.1023\/A:1022852314914","journal-title":"Fuzzy Optim Decis Mak"},{"key":"2949_CR31","doi-asserted-by":"publisher","unstructured":"Yager RR (2013a) Pythagorean fuzzy subsets. In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA\/NAFIPS). IEEE, pp 57\u201361. https:\/\/doi.org\/10.1109\/TFUZZ.2013.2278989","DOI":"10.1109\/TFUZZ.2013.2278989"},{"issue":"4","key":"2949_CR32","doi-asserted-by":"publisher","first-page":"958","DOI":"10.1109\/IFSA-NAFIPS.2013.6608375","volume":"22","author":"RR Yager","year":"2013","unstructured":"Yager RR (2013) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958\u2013965. https:\/\/doi.org\/10.1109\/IFSA-NAFIPS.2013.6608375","journal-title":"IEEE Trans Fuzzy Syst"},{"issue":"5","key":"2949_CR33","doi-asserted-by":"publisher","first-page":"1222","DOI":"10.1109\/TFUZZ.2016.2604005","volume":"25","author":"RR Yager","year":"2016","unstructured":"Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst 25(5):1222\u20131230. https:\/\/doi.org\/10.1109\/TFUZZ.2016.2604005","journal-title":"IEEE Trans Fuzzy Syst"},{"issue":"5","key":"2949_CR34","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1002\/int.21584","volume":"28","author":"RR Yager","year":"2013","unstructured":"Yager RR, Abbasov AM (2013) Pythagorean membership grades, complex numbers, and decision making. Int J Intell Syst 28(5):436\u2013452. https:\/\/doi.org\/10.1002\/int.21584","journal-title":"Int J Intell Syst"},{"issue":"3","key":"2949_CR35","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1016\/S0019-9958(65)90241-X","volume":"8","author":"LA Zadeh","year":"1965","unstructured":"Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338\u2013353. https:\/\/doi.org\/10.1016\/S0019-9958(65)90241-X","journal-title":"Inf Control"},{"issue":"1","key":"2949_CR36","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/0165-0114(78)90031-3","volume":"1","author":"H-J Zimmermann","year":"1978","unstructured":"Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1(1):45\u201355. https:\/\/doi.org\/10.1016\/0165-0114(78)90031-3","journal-title":"Fuzzy Sets Syst"}],"container-title":["Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-024-02949-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s40314-024-02949-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-024-02949-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T11:11:38Z","timestamp":1732273898000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s40314-024-02949-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,22]]},"references-count":36,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2025,2]]}},"alternative-id":["2949"],"URL":"https:\/\/doi.org\/10.1007\/s40314-024-02949-3","relation":{},"ISSN":["2238-3603","1807-0302"],"issn-type":[{"value":"2238-3603","type":"print"},{"value":"1807-0302","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,22]]},"assertion":[{"value":"24 January 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 August 2024","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 September 2024","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 November 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}}],"article-number":"44"}}