{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T12:54:59Z","timestamp":1740142499602,"version":"3.37.3"},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T00:00:00Z","timestamp":1703808000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T00:00:00Z","timestamp":1703808000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Comp. Appl. Math."],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1007\/s40314-023-02537-x","type":"journal-article","created":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T08:02:58Z","timestamp":1703836978000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An adapted energy dissipation law-preserving numerical algorithm for a phase-field surfactant model"],"prefix":"10.1007","volume":"43","author":[{"given":"Junxiang","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0484-9189","authenticated-orcid":false,"given":"Junseok","family":"Kim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,29]]},"reference":[{"key":"2537_CR1","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1007\/s40314-022-02109-5","volume":"41","author":"R Abazari","year":"2022","unstructured":"Abazari R, Rezazadeh H, Akinyemi L, Inc M (2022) Numerical simulation of a binary alloy of 2D Cahn-Hilliard model for phase separation. Comput Appl Math 41:389","journal-title":"Comput Appl Math"},{"key":"2537_CR2","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1016\/j.compfluid.2018.08.023","volume":"178","author":"S Aihara","year":"2019","unstructured":"Aihara S, Takaki T, Takada N (2019) Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow. Comput Fluid 178:141\u2013151","journal-title":"Comput Fluid"},{"issue":"2","key":"2537_CR3","first-page":"192","volume":"16","author":"R Backofen","year":"2019","unstructured":"Backofen R, Wise SM, Salvalaglio M, Voigt A (2019) Convexity splitting in a phase field model for surface diffusion. Int J Numer Anal Mod 16(2):192\u2013209","journal-title":"Int J Numer Anal Mod"},{"key":"2537_CR4","doi-asserted-by":"publisher","first-page":"1318","DOI":"10.4208\/aamm.OA-2020-0297","volume":"13","author":"Q Cheng","year":"2021","unstructured":"Cheng Q, Wang C (2021) Error estimate of second order accurate scalar auxiliary variable (SAV) scheme for the thin film epitaxial models. Adv Comput Math Mech 13:1318\u20131354","journal-title":"Adv Comput Math Mech"},{"key":"2537_CR5","doi-asserted-by":"publisher","first-page":"113070","DOI":"10.1016\/j.cma.2020.113070","volume":"367","author":"Q Cheng","year":"2020","unstructured":"Cheng Q, Liu C, Shen J (2020) A new Lagrange multiplier approach for gradient flows. Comput Methods Appl Mech Eng 367:113070","journal-title":"Comput Methods Appl Mech Eng"},{"key":"2537_CR6","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.jcp.2019.04.069","volume":"392","author":"P-H Chiu","year":"2019","unstructured":"Chiu P-H (2019) A coupled phase field framework for solving incompressible two-phase flows. J Comput Phys 392:115\u2013140","journal-title":"J Comput Phys"},{"key":"2537_CR7","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1007\/s40314-022-01801-w","volume":"41","author":"N Cui","year":"2022","unstructured":"Cui N, Wang P, Li Q (2022) A second-order BDF scheme for the Swift-Hohenberg gradient flows with quadratic-cubic nonlinearity and vacancy potential. Comput Appl Math 41:85","journal-title":"Comput Appl Math"},{"key":"2537_CR8","doi-asserted-by":"publisher","first-page":"110451","DOI":"10.1016\/j.jcp.2021.110451","volume":"442","author":"L Dong","year":"2021","unstructured":"Dong L, Wang C, Wise SM, Zhang Z (2021) A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. J Comput Phys 442:110451","journal-title":"J Comput Phys"},{"key":"2537_CR9","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1016\/j.apnum.2020.06.010","volume":"157","author":"Y Gao","year":"2020","unstructured":"Gao Y, Li R, Mei L, Lin Y (2020) A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system. Appl Numer Math 157:338\u2013355","journal-title":"Appl Numer Math"},{"key":"2537_CR10","doi-asserted-by":"publisher","first-page":"416","DOI":"10.1016\/j.jcp.2014.03.060","volume":"270","author":"S Gu","year":"2014","unstructured":"Gu S, Zhang H, Zhang Z (2014) An energy-stable finite difference scheme for the binary fluid-surfactant system. J Comput Phys 270:416\u2013431","journal-title":"J Comput Phys"},{"key":"2537_CR11","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/j.jcp.2014.08.001","volume":"277","author":"Z Guan","year":"2014","unstructured":"Guan Z, Lowengrub JS, Wang C, Wise SM (2014) Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations. J Comput Phys 277:48\u201371","journal-title":"J Comput Phys"},{"issue":"32","key":"2537_CR12","doi-asserted-by":"publisher","first-page":"6715","DOI":"10.1088\/0953-8984\/4\/32\/006","volume":"3","author":"M Laradji","year":"1992","unstructured":"Laradji M, Guo H, Grant M, Zuckermann MJ (1992) The effect of surfactants on the dynamics of of phase separation. J Phys Condens Matter 3(32):6715","journal-title":"J Phys Condens Matter"},{"issue":"1","key":"2537_CR13","doi-asserted-by":"publisher","first-page":"11","DOI":"10.3390\/math8010011","volume":"8","author":"HG Lee","year":"2021","unstructured":"Lee HG (2021) Stability condition of the second-order SSP-IMEX-RK method for the Cahn-Hilliard equation. Mathematics 8(1):11","journal-title":"Mathematics"},{"key":"2537_CR14","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.matcom.2015.08.018","volume":"119","author":"D Lee","year":"2016","unstructured":"Lee D, Kim J (2016) Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations. Math Comput Simul 119:35\u201356","journal-title":"Math Comput Simul"},{"key":"2537_CR15","doi-asserted-by":"publisher","first-page":"105224","DOI":"10.1016\/j.cnsns.2020.105224","volume":"85","author":"D Lee","year":"2020","unstructured":"Lee D, Kim Y (2020) Novel mass-conserving Allen-Cahn equation for the boundedness of an order parameter. Commun Nonlinear Sci Numer Simulat 85:105224","journal-title":"Commun Nonlinear Sci Numer Simulat"},{"key":"2537_CR16","doi-asserted-by":"publisher","first-page":"2047","DOI":"10.1090\/mcom\/3428","volume":"88","author":"X Li","year":"2019","unstructured":"Li X, Shen J, Rui H (2019) Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math Comp 88:2047\u20132068","journal-title":"Math Comp"},{"key":"2537_CR17","doi-asserted-by":"publisher","first-page":"113335","DOI":"10.1016\/j.cam.2020.113335","volume":"389","author":"Q Li","year":"2021","unstructured":"Li Q, Mei L, Li Y (2021) Efficient second-order unconditionally stable numerical schemes for the modified phase field crystal model with long-range interaction. J Comput Appl Math 389:113335","journal-title":"J Comput Appl Math"},{"key":"2537_CR18","doi-asserted-by":"publisher","first-page":"113778","DOI":"10.1016\/j.cam.2021.113778","volume":"401","author":"Y Li","year":"2022","unstructured":"Li Y, Liu R, Xia Q, He C, Li Z (2022) First- and second-order unconditionally stable direct discretization methods for multi-component Cahn-Hilliard system on surfaces. J Comput Appl Math 401:113778","journal-title":"J Comput Appl Math"},{"key":"2537_CR19","doi-asserted-by":"publisher","first-page":"105443","DOI":"10.1016\/j.cnsns.2020.105443","volume":"91","author":"H Liang","year":"2020","unstructured":"Liang H, Zhang C, Du R, Wei Y (2020) Lattice Boltzmann method for fractional Cahn-Hilliard equation. Commun Nonlinear Sci Numer Simulat 91:105443","journal-title":"Commun Nonlinear Sci Numer Simulat"},{"key":"2537_CR20","doi-asserted-by":"publisher","first-page":"491","DOI":"10.1016\/j.apnum.2019.10.019","volume":"150","author":"Z Liu","year":"2020","unstructured":"Liu Z, Li X (2020) Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl Numer Math 150:491\u2013506","journal-title":"Appl Numer Math"},{"issue":"3","key":"2537_CR21","first-page":"399","volume":"18","author":"Y Qin","year":"2021","unstructured":"Qin Y, Wang C, Zhang Z (2021) A positivity-preserving and convergent numerical scheme for the binary fluid-surfactant system. Int J Numer Anal Model 18(3):399\u2013425","journal-title":"Int J Numer Anal Model"},{"key":"2537_CR22","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1016\/j.compfluid.2018.11.018","volume":"179","author":"Y Shi","year":"2019","unstructured":"Shi Y, Tang GH, Cheng LH, Shuang HQ (2019) An improved phase-field-based lattice Boltzmann model for droplet dynamics with soluble surfactant. Comput Fluids 179:508\u2013520","journal-title":"Comput Fluids"},{"key":"2537_CR23","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1016\/j.apnum.2020.12.024","volume":"163","author":"J Shin","year":"2021","unstructured":"Shin J, Lee HG (2021) A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl Numer Math 163:30\u201342","journal-title":"Appl Numer Math"},{"key":"2537_CR24","doi-asserted-by":"publisher","first-page":"683","DOI":"10.1007\/s00707-018-2304-2","volume":"230","author":"G Soligo","year":"2019","unstructured":"Soligo G, Roccon A, Soldati A (2019) Mass-conservation-improved phase field methods for turbulent multiphase flow simulation. Acta Mech 230:683\u2013696","journal-title":"Acta Mech"},{"key":"2537_CR25","doi-asserted-by":"publisher","first-page":"113123","DOI":"10.1016\/j.cma.2020.113123","volume":"367","author":"M Sun","year":"2020","unstructured":"Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Eng 367:113123","journal-title":"Comput Methods Appl Mech Eng"},{"key":"2537_CR26","volume-title":"Multigrid","author":"U Trottenberg","year":"2001","unstructured":"Trottenberg U, Oosterlee C, Sch\u00fcller A (2001) Multigrid. Academic press, New York"},{"issue":"2","key":"2537_CR27","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/s10915-021-01487-y","volume":"88","author":"M Wang","year":"2021","unstructured":"Wang M, Huang Q, Wang C (2021) A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. J Sci Comput 88(2):33","journal-title":"J Sci Comput"},{"key":"2537_CR28","doi-asserted-by":"publisher","first-page":"1533","DOI":"10.1007\/s10915-017-0508-6","volume":"74","author":"X Yang","year":"2018","unstructured":"Yang X (2018) Numerical approximations for the Cahn-Hilliard phase field model of the binary fluid-surfactant system. J Sci Comput 74:1533\u20131553","journal-title":"J Sci Comput"},{"key":"2537_CR29","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.apm.2020.08.045","volume":"90","author":"J Yang","year":"2021","unstructured":"Yang J, Kim J (2021) An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model. Appl Math Model 90:11\u201329","journal-title":"Appl Math Model"},{"key":"2537_CR30","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1007\/s10440-021-00405-6","volume":"172","author":"J Yang","year":"2021","unstructured":"Yang J, Kim J (2021) Linear, second-order accurate, and energy stable scheme for a ternary Cahn-Hilliard model by using Lagrange multiplier approach. Acta Appl Math 172:10","journal-title":"Acta Appl Math"},{"key":"2537_CR31","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1007\/s40314-021-01726-w","volume":"41","author":"J Yang","year":"2022","unstructured":"Yang J, Kim J (2022) Numerical simulation and analysis of the Swift-Hohenberg equation by the stabilized Lagrange multiplier approach. Comput Appl Math 41:20","journal-title":"Comput Appl Math"},{"key":"2537_CR32","doi-asserted-by":"publisher","first-page":"110909","DOI":"10.1016\/j.jcp.2021.110909","volume":"452","author":"J Yang","year":"2022","unstructured":"Yang J, Tan Z, Kim J (2022) Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach. J Comput Phys 452:110909","journal-title":"J Comput Phys"},{"issue":"8","key":"2537_CR33","doi-asserted-by":"publisher","first-page":"1385","DOI":"10.3390\/math8081385","volume":"8","author":"S Yoon","year":"2020","unstructured":"Yoon S, Jeong D, Lee C, Kim H, Kim S, Lee HG, Kim J (2020) Fourier-spectral method for the phase-field equations. Mathematics 8(8):1385","journal-title":"Mathematics"},{"key":"2537_CR34","doi-asserted-by":"publisher","first-page":"A1248","DOI":"10.1137\/20M1375656","volume":"43","author":"J Zhang","year":"2021","unstructured":"Zhang J, Wang C, Wise S, Zhang Z (2021) Structure-preserving, energy stable numerical scheme for a liquid thin film coarsening model. SIAM J Sci Comput 43:A1248\u2013A1272","journal-title":"SIAM J Sci Comput"},{"key":"2537_CR35","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1007\/s10440-014-9963-3","volume":"199","author":"X Zhao","year":"2015","unstructured":"Zhao X, Liu C (2015) On the existence of global attractor for 3D viscous Cahn-Hilliard equation. Acta Appl Math 199:199\u2013212","journal-title":"Acta Appl Math"},{"key":"2537_CR36","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/s10915-019-00934-1","volume":"80","author":"G Zhu","year":"2019","unstructured":"Zhu G, Kou J, Sun S, Yao J, Li A (2019) Numerical approximation of a phase-field surfactant model with fluid flow. J Sci Comput 80:223\u2013247","journal-title":"J Sci Comput"},{"key":"2537_CR37","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1017\/jfm.2019.664","volume":"879","author":"G Zhu","year":"2019","unstructured":"Zhu G, Kou J, Yao B, Wu YS, Yao J, Sun S (2019) Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. J Fluid Mech 879:327\u2013359","journal-title":"J Fluid Mech"},{"key":"2537_CR38","doi-asserted-by":"publisher","first-page":"614","DOI":"10.1016\/j.apm.2020.02.022","volume":"83","author":"G Zhu","year":"2020","unstructured":"Zhu G, Chen H, Li A, Sun S, Yao J (2020) Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities. Appl Math Model 83:614\u2013639","journal-title":"Appl Math Model"}],"container-title":["Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-023-02537-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s40314-023-02537-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-023-02537-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,11]],"date-time":"2024-02-11T11:24:25Z","timestamp":1707650665000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s40314-023-02537-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,29]]},"references-count":38,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024,2]]}},"alternative-id":["2537"],"URL":"https:\/\/doi.org\/10.1007\/s40314-023-02537-x","relation":{},"ISSN":["2238-3603","1807-0302"],"issn-type":[{"type":"print","value":"2238-3603"},{"type":"electronic","value":"1807-0302"}],"subject":[],"published":{"date-parts":[[2023,12,29]]},"assertion":[{"value":"18 August 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 November 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 November 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 December 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"All the authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"31"}}