{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T21:13:39Z","timestamp":1713215619373},"reference-count":32,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2021,8,19]],"date-time":"2021-08-19T00:00:00Z","timestamp":1629331200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,8,19]],"date-time":"2021-08-19T00:00:00Z","timestamp":1629331200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Comp. Appl. Math."],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1007\/s40314-021-01599-z","type":"journal-article","created":{"date-parts":[[2021,8,19]],"date-time":"2021-08-19T17:34:38Z","timestamp":1629394478000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Efficient adaptive step-size formulation of an optimized two-step hybrid block method for directly solving general second-order initial-value problems"],"prefix":"10.1007","volume":"40","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8496-6755","authenticated-orcid":false,"given":"Rajat","family":"Singla","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9708-8608","authenticated-orcid":false,"given":"Gurjinder","family":"Singh","sequence":"additional","affiliation":[]},{"given":"V.","family":"Kanwar","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2791-6230","authenticated-orcid":false,"given":"Higinio","family":"Ramos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,8,19]]},"reference":[{"issue":"1","key":"1599_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.21042\/AMNS.2017.1.00001","volume":"2","author":"S Amat","year":"2017","unstructured":"Amat S, Busquier S (2017) After notes on Chebyshev\u2019s iterative method. Appl Math Nonlinear Sci 2(1):1\u20132","journal-title":"Appl Math Nonlinear Sci"},{"key":"1599_CR2","unstructured":"Brugano L, Trigiante D (1998) Solving differential problems by multi-step initial and boundary value methods. Gordon and Breach Science Publishers, Amsterdam"},{"key":"1599_CR3","doi-asserted-by":"crossref","unstructured":"Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley","DOI":"10.1002\/9780470753767"},{"issue":"2","key":"1599_CR4","doi-asserted-by":"publisher","first-page":"547","DOI":"10.21042\/AMNS.2016.2.00043","volume":"1","author":"M Calvo","year":"2016","unstructured":"Calvo M, Montijano JI, Randez L (2016) A new step-size change technique for Adams methods. Appl Math Nonlinear Sci 1(2):547\u2013558","journal-title":"Appl Math Nonlinear Sci"},{"issue":"1","key":"1599_CR5","doi-asserted-by":"publisher","first-page":"43","DOI":"10.2478\/AMNS.2019.1.00005","volume":"4","author":"A Cordero","year":"2019","unstructured":"Cordero A, Jaiswal JP, Torregrosa JR (2019) Stability analysis of fourth-order iterative method for finding multiple roots of nonlinear equations. Appl Math Nonlinear Sci 4(1):43\u201356","journal-title":"Appl Math Nonlinear Sci"},{"key":"1599_CR6","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1080\/00207169108804026","volume":"41","author":"SO Fatunla","year":"1991","unstructured":"Fatunla SO (1991) Block methods for second order odes. Int J Comput Math 41:55\u201363","journal-title":"Int J Comput Math"},{"key":"1599_CR7","volume-title":"Solving ordinary differential equations-I","author":"E Hairer","year":"1993","unstructured":"Hairer E, N\u00f6rsett SP, Wanner G (1993) Solving ordinary differential equations-I. Springer, Berlin"},{"issue":"4","key":"1599_CR8","first-page":"381","volume":"59","author":"SN Jator","year":"2010","unstructured":"Jator SN (2010a) On a class of Hybrid methods for $$y^{\\prime \\prime }=f(x, y, y^{\\prime })$$. Int J Pure Appl Math 59(4):381\u2013395","journal-title":"Int J Pure Appl Math"},{"key":"1599_CR9","doi-asserted-by":"publisher","first-page":"4036","DOI":"10.1016\/j.amc.2010.10.010","volume":"217","author":"SN Jator","year":"2010","unstructured":"Jator SN (2010b) Solving second order initial value problems by a hybrid multi-step method without predictors. Appl Math Comp 217:4036\u20134046","journal-title":"Appl Math Comp"},{"key":"1599_CR10","unstructured":"Lambert JD (1991) Numerical methods for ordinary differential systems: the initial value problem. Wiley"},{"key":"1599_CR11","unstructured":"Majid ZA, Azmi NA, Suleiman M (2009) Solving second order ordinary differential equations using two point four step direct implicit block method. Eur J Sci Res 31:29\u201336"},{"key":"1599_CR12","unstructured":"Milne WE (1953) Numerical solution of differential equations. Wiley"},{"key":"1599_CR13","doi-asserted-by":"publisher","DOI":"10.1002\/mma.4386","author":"T Monovasils","year":"2017","unstructured":"Monovasils T, Kalogiratou Z, Ramos H, Simos TE (2017) Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math Meth Appl Sci. https:\/\/doi.org\/10.1002\/mma.4386","journal-title":"Math Meth Appl Sci"},{"issue":"46","key":"1599_CR14","doi-asserted-by":"publisher","first-page":"2257","DOI":"10.12988\/ijma.2015.57181","volume":"9","author":"Z Omar","year":"2015","unstructured":"Omar Z (2015) Developing a single step hybrid block method with generalized three off-step points for the direct solution of second order ordinary differential equations. Int J Math Anal 9(46):2257\u20132272","journal-title":"Int J Math Anal"},{"key":"1599_CR15","doi-asserted-by":"crossref","unstructured":"Petkovic MS, Neta B, Petkovic LD, Dzunic J (2013) Multipoint methods for solving nonlinear equations. Elsevier","DOI":"10.1016\/B978-0-12-397013-8.00002-9"},{"issue":"7\u20138","key":"1599_CR16","doi-asserted-by":"publisher","first-page":"741","DOI":"10.1515\/ijnsns-2017-0267","volume":"19","author":"S Qureshi","year":"2018","unstructured":"Qureshi S, Ramos H (2018) L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems. Int J Nonlinear Sci Numer Simul 19(7\u20138):741\u2013751","journal-title":"Int J Nonlinear Sci Numer Simul"},{"key":"1599_CR17","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1016\/j.amc.2018.03.098","volume":"333","author":"H Ramos","year":"2018","unstructured":"Ramos H, Rufai MA (2018) Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems. Appl Math Comp 333:231\u2013245","journal-title":"Appl Math Comp"},{"key":"1599_CR18","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1016\/j.aml.2016.08.012","volume":"64","author":"H Ramos","year":"2017","unstructured":"Ramos H, Singh G (2017a) A note on variable step-size formulation of a Simpson\u2019s-type second derivative block method for solving stiff systems. Appl Math Lett 64:101\u2013107","journal-title":"Appl Math Lett"},{"key":"1599_CR19","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.amc.2017.04.020","volume":"310","author":"H Ramos","year":"2017","unstructured":"Ramos H, Singh G (2017b) A tenth order A-stable two-step hybrid block method for solving initial value problems of ODEs. Appl Math Comp 310:75\u201388","journal-title":"Appl Math Comp"},{"key":"1599_CR20","doi-asserted-by":"publisher","first-page":"837","DOI":"10.1016\/j.mcm.2005.09.011","volume":"42","author":"H Ramos","year":"2005","unstructured":"Ramos H, Vigo Aguiar J (2005) Variable step-size St\u00f6rmer-Cowell methods. Math Comput Model 42:837\u2013846","journal-title":"Math Comput Model"},{"issue":"4","key":"1599_CR21","doi-asserted-by":"publisher","first-page":"1089","DOI":"10.1007\/s11075-015-0081-8","volume":"72","author":"H Ramos","year":"2016","unstructured":"Ramos H, Kalogiratou Z, Monovasilis T, Simos TE (2016a) An optimized two-step hybrid block method for solving general second order initial value problems. Numer Algebra 72(4):1089\u20131102","journal-title":"Numer Algebra"},{"key":"1599_CR22","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.amc.2016.06.033","volume":"291","author":"H Ramos","year":"2016","unstructured":"Ramos H, Singh G, Kanwar V, Bhatia S (2016b) An efficient variable step-size rational Falkner-type method for solving the special second-order IVP. Appl Math Compt 291:39\u201351","journal-title":"Appl Math Compt"},{"key":"1599_CR23","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1016\/j.cam.2015.12.018","volume":"318","author":"H Ramos","year":"2017","unstructured":"Ramos H, Mehta S, Vigo Aguiar J (2017) A unified approach for the development of $$k$$-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J Comp Appl Math 318:550\u2013564","journal-title":"J Comp Appl Math"},{"key":"1599_CR24","doi-asserted-by":"crossref","unstructured":"Calvo M, Montijano JI, Randez L (2016) A new step-size change technique for Adams methods. Appl Math Nonlinear Sci 1(2):547\u2013558","DOI":"10.21042\/AMNS.2016.2.00043"},{"key":"1599_CR25","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1137\/1009069","volume":"9","author":"JB Rosser","year":"1967","unstructured":"Rosser JB (1967) A Runge-Kutta for all reasons. SIAM Rev 9:417\u2013452","journal-title":"SIAM Rev"},{"key":"1599_CR26","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1080\/00207160210956","volume":"79","author":"S Sallam","year":"2002","unstructured":"Sallam S, Anwar N (2002) Sixth order C 2-spline collocation method for integrating second orderordinary initial value problems. Int J Comput Math 79:625\u2013635","journal-title":"Int J Comput Math"},{"key":"1599_CR27","unstructured":"Sedgwick AE (1973) An effective variable order variable step Adams method, Report 53, Department of Computer Science, University of Toronto, Toronto"},{"key":"1599_CR28","volume-title":"Computer solution of ordinary differential equations: the initial value problem","author":"LF Shampine","year":"1975","unstructured":"Shampine LF, Gordon MK (1975) Computer solution of ordinary differential equations: the initial value problem. Freeman, San Francisco"},{"key":"1599_CR29","first-page":"731","volume":"23","author":"LF Shampine","year":"1969","unstructured":"Shampine LF, Watts HA (1969) Block implicit one-step methods. Math Comp 23:731\u2013740","journal-title":"Block implicit one-step methods. Math Comp"},{"key":"1599_CR30","doi-asserted-by":"publisher","first-page":"331","DOI":"10.4208\/nmtma.OA-2017-0124","volume":"12","author":"G Singh","year":"2019","unstructured":"Singh G, Ramos H (2019) An optimized two-step hybrid block method formulated in variable step-size mode for integrating $$y^{\\prime \\prime } =f (x, y, y^{\\prime })$$ numerically. Numer Math Theor Meth Appl 12:331\u2013347","journal-title":"Numer Math Theor Meth Appl"},{"key":"1599_CR31","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.cam.2005.04.043","volume":"192","author":"J Vigo Aguiar","year":"2006","unstructured":"Vigo Aguiar J, Ramos H (2006) Variable step-size implementation of multi-step methods for $$y^{\\prime \\prime }=f (x, y, y^{\\prime })$$. J Comput Appl Math 192:114\u2013131","journal-title":"J Comput Appl Math"},{"key":"1599_CR32","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1016\/0377-0427(83)90040-7","volume":"9","author":"HA Watts","year":"1983","unstructured":"Watts HA (1983) Starting step size for an ODE solver. J Comp Appl Math 9:177\u2013191","journal-title":"J Comp Appl Math"}],"container-title":["Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-021-01599-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s40314-021-01599-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-021-01599-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,24]],"date-time":"2021-09-24T17:37:16Z","timestamp":1632505036000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s40314-021-01599-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8,19]]},"references-count":32,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2021,9]]}},"alternative-id":["1599"],"URL":"https:\/\/doi.org\/10.1007\/s40314-021-01599-z","relation":{},"ISSN":["2238-3603","1807-0302"],"issn-type":[{"value":"2238-3603","type":"print"},{"value":"1807-0302","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,8,19]]},"assertion":[{"value":"3 April 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 July 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 July 2021","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 August 2021","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"220"}}