{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T12:54:43Z","timestamp":1740142483086,"version":"3.37.3"},"reference-count":15,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2020,9,22]],"date-time":"2020-09-22T00:00:00Z","timestamp":1600732800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,9,22]],"date-time":"2020-09-22T00:00:00Z","timestamp":1600732800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001871","name":"Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia","doi-asserted-by":"publisher","award":["UID\/MAT\/00324\/2019","UID\/MAT\/04721\/2020"],"id":[{"id":"10.13039\/501100001871","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Comp. Appl. Math."],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1007\/s40314-020-01327-z","type":"journal-article","created":{"date-parts":[[2020,9,22]],"date-time":"2020-09-22T14:02:52Z","timestamp":1600783372000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Approximating the eigenvalues and eigenvectors of birth and death matrices"],"prefix":"10.1007","volume":"39","author":[{"given":"Nat\u00e1lia","family":"Bebiano","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0395-5972","authenticated-orcid":false,"given":"Susana","family":"Furtado","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,22]]},"reference":[{"key":"1327_CR1","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1016\/j.laa.2018.04.023","volume":"552","author":"N Bebiano","year":"2018","unstructured":"Bebiano N, Furtado S (2018) Structured distance to normality of tridiagonal matrices. Linear Algebra Appl 552:239\u2013255","journal-title":"Linear Algebra Appl"},{"key":"1327_CR2","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1017\/S0269964800001972","volume":"5","author":"M Brown","year":"1991","unstructured":"Brown M (1991) Spectral analysis, without eigenvectors, for Markov chains. Prob Eng Inf Sci 5:131\u2013144","journal-title":"Prob Eng Inf Sci"},{"key":"1327_CR3","unstructured":"Castillo K, Zaballa I (2020) On variation of eigenvalues of birth and death matrices and random walk matrices. arXiv:1906.08644"},{"key":"1327_CR4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1590\/S0101-82052003000100001","volume":"22","author":"MG Eberle","year":"2003","unstructured":"Eberle MG, Maciel MC (2003) Finding the closest Toeplitz matrix. Comput Appl Math 22:1\u201318","journal-title":"Comput Appl Math"},{"key":"1327_CR5","doi-asserted-by":"publisher","first-page":"376","DOI":"10.1007\/s10474-019-00970-1","volume":"160","author":"CM Fonseca","year":"2020","unstructured":"Fonseca CM, Kowalenko V (2020) Eigenpairs of a family of tridiagonal matrices: three decades later. Acta Math Hungar 160:376\u2013389","journal-title":"Acta Math Hungar"},{"key":"1327_CR6","doi-asserted-by":"crossref","unstructured":"Greenbaum A, Li R, Overton ML (2020) First-order perturbation theory for eigenvalues and eigenvectors. arXiv:1903.00785","DOI":"10.1137\/19M124784X"},{"key":"1327_CR7","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/0024-3795(70)90026-1","volume":"103","author":"GJ Horne","year":"1970","unstructured":"Horne GJ, Magagna L (1970) Monotonicity of the eigenvalues of birth and death matrices. Linear Algebra Appl 103:31\u201343","journal-title":"Linear Algebra Appl"},{"key":"1327_CR8","volume-title":"A first course in stochastic processes","author":"S Karlin","year":"2014","unstructured":"Karlin S (2014) A first course in stochastic processes. Academic Press, Cambridge"},{"key":"1327_CR9","doi-asserted-by":"publisher","DOI":"10.1137\/1.9780898719734","volume-title":"Introduction to matrix analytic methods in stochastic modeling","author":"G Latouche","year":"1999","unstructured":"Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. SIAM, Philadelphia"},{"key":"1327_CR10","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1007\/BF00051649","volume":"60","author":"L Losonczi","year":"1992","unstructured":"Losonczi L (1992) Eigenvalues and eigenvectors of some tridiagonal matrices. Acta Math Hungar 60:309\u2013332","journal-title":"Acta Math Hungar"},{"key":"1327_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1002\/nla.2232","volume":"26","author":"S Noschese","year":"2019","unstructured":"Noschese S, Reichel L (2019) Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz-type matrices. Numer Linear Algebra Appl 26:1\u201320","journal-title":"Numer Linear Algebra Appl"},{"key":"1327_CR12","doi-asserted-by":"publisher","DOI":"10.2307\/j.ctvjghw98","volume-title":"Evolutionary dynamics","author":"MA Nowak","year":"2006","unstructured":"Nowak MA (2006) Evolutionary dynamics. Harvard University Press, Cambridge"},{"key":"1327_CR13","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/0022-247X(62)90032-X","volume":"4","author":"SV Parter","year":"1962","unstructured":"Parter SV, Youngs JWT (1962) The symmetrization of matrices by diagonal matrices. J Math Anal Appl 4:102\u2013110","journal-title":"J Math Anal Appl"},{"key":"1327_CR14","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/S0898-1221(99)00166-2","volume":"38","author":"PR Parthasarathy","year":"1999","unstructured":"Parthasarathy PR, Lenin RB (1999) An inverse problem in birth and death processes. Comput Math Appl 38:33\u201340","journal-title":"Comput Math Appl"},{"key":"1327_CR15","doi-asserted-by":"crossref","unstructured":"Fu Peng N (1996) Spectral representations of the transition probability matrices for continuous time finite Markov chains. J Appl Prob 33:28\u201333","DOI":"10.1017\/S0021900200103699"}],"container-title":["Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-020-01327-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s40314-020-01327-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s40314-020-01327-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T18:35:33Z","timestamp":1696703733000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s40314-020-01327-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,22]]},"references-count":15,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["1327"],"URL":"https:\/\/doi.org\/10.1007\/s40314-020-01327-z","relation":{},"ISSN":["2238-3603","1807-0302"],"issn-type":[{"type":"print","value":"2238-3603"},{"type":"electronic","value":"1807-0302"}],"subject":[],"published":{"date-parts":[[2020,9,22]]},"assertion":[{"value":"13 February 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 August 2020","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 September 2020","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 September 2020","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"279"}}