{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:39:46Z","timestamp":1726850386512},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2020,9,21]],"date-time":"2020-09-21T00:00:00Z","timestamp":1600646400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,9,21]],"date-time":"2020-09-21T00:00:00Z","timestamp":1600646400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Health Inf Sci Syst"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1007\/s13755-020-00119-3","type":"journal-article","created":{"date-parts":[[2020,9,21]],"date-time":"2020-09-21T20:02:25Z","timestamp":1600718545000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":62,"title":["PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images"],"prefix":"10.1007","volume":"8","author":[{"given":"Nihad K.","family":"Chowdhury","sequence":"first","affiliation":[]},{"given":"Md. Muhtadir","family":"Rahman","sequence":"additional","affiliation":[]},{"given":"Muhammad Ashad","family":"Kabir","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,21]]},"reference":[{"key":"119_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/s13246-020-00865-4","author":"ID Apostolopoulos","year":"2020","unstructured":"Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;. https:\/\/doi.org\/10.1007\/s13246-020-00865-4.","journal-title":"Phys Eng Sci Med"},{"key":"119_CR2","doi-asserted-by":"crossref","unstructured":"Bukhari SUK, Bukhari SSK, Syed A, Shah SSH. The diagnostic evaluation of convolutional neural network (CNN) for the assessment of chest X-ray of patients infected with covid-19. 2020; medRxiv 2020.03.26.20044610.","DOI":"10.1101\/2020.03.26.20044610"},{"key":"119_CR3","doi-asserted-by":"crossref","unstructured":"Bullock J, Luccioni A, Pham KH, Lam CSN, Luengo-Oroz M. Mapping the landscape of artificial intelligence applications against covid-19. 2020.arXiv:2003.11336.","DOI":"10.1613\/jair.1.12162"},{"key":"119_CR4","doi-asserted-by":"crossref","unstructured":"Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: IEEE winter conference on applications of computer vision (WACV); 2018. p. 839\u2013847.","DOI":"10.1109\/WACV.2018.00097"},{"key":"119_CR5","doi-asserted-by":"crossref","unstructured":"Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, Reaz MBI. Can ai help in screening viral and covid-19 pneumonia? arXiv:2003.13145; 2020.","DOI":"10.1109\/ACCESS.2020.3010287"},{"key":"119_CR6","doi-asserted-by":"publisher","first-page":"d947","DOI":"10.1136\/bmj.d947","volume":"342","author":"HE Davies","year":"2011","unstructured":"Davies HE, Wathen CG, Gleeson FV. The risks of radiation exposure related to diagnostic imaging and how to minimise them. Bmj. 2011;342:d947. https:\/\/doi.org\/10.1136\/bmj.d947.","journal-title":"Bmj"},{"key":"119_CR7","unstructured":"Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. arXiv:1603.07285; 2016."},{"key":"119_CR8","unstructured":"Farooq M, Hafeez A. Covid-resnet: a deep learning framework for screening of covid19 from radiographs. arXiv:2003.14395; 2020."},{"key":"119_CR9","unstructured":"Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep learning for coronavirus (covid-19) detection. arXiv:2003.10769; 2020."},{"key":"119_CR10","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR); 2016. p. 770\u2013778. https:\/\/doi.org\/10.1109\/CVPR.2016.90.","DOI":"10.1109\/CVPR.2016.90"},{"key":"119_CR11","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR); 2017. p. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"119_CR12","unstructured":"Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and $$<0.5\\text{mb}$$ model size. arXiv:1602.07360; 2016."},{"key":"119_CR13","unstructured":"Joseph P C, Paul M, Lan D. Covid-19 image data collection. arXiv:2003.11597; 2020."},{"key":"119_CR14","unstructured":"Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv:1412.6980; 2014."},{"key":"119_CR15","unstructured":"Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems. 2012; 1. p. 1097\u20131105."},{"key":"119_CR16","doi-asserted-by":"crossref","unstructured":"Luz E, Silva PL, Silva R, Silva L, Moreira G, Menotti D. Towards an effective and efficient deep learning model for covid-19 patterns detection in X-ray images. arXiv:2004.05717; 2020.","DOI":"10.1007\/s42600-021-00151-6"},{"key":"119_CR17","doi-asserted-by":"crossref","unstructured":"Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, Khan MK. Diagnosing covid-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. arXiv:2004.00038; 2020.","DOI":"10.1117\/12.2588672"},{"key":"119_CR18","doi-asserted-by":"publisher","DOI":"10.1148\/ryct.2020200034","author":"M Mg","year":"2020","unstructured":"Mg M, Lee E, Yang J, Yang F, Li X, Wang H, Lui M, Lo C, Leung BST, Khong P, Hui C, Yuen K, Kuo M. Imaging profile of the covid-19 infection: radiologic findings and literature review. Radiology. 2020;. https:\/\/doi.org\/10.1148\/ryct.2020200034.","journal-title":"Radiology"},{"key":"119_CR19","doi-asserted-by":"crossref","unstructured":"Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-covid: predicting covid-19 from chest X-ray images using deep transfer learning. arXiv:2004.09363; 2020.","DOI":"10.1016\/j.media.2020.101794"},{"key":"119_CR20","unstructured":"Mooney P. Chest X-ray images (pneumonia). https:\/\/www.kaggle.com\/paultimothymooney\/chest-xray-pneumonia."},{"key":"119_CR21","unstructured":"Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on international conference on machine learning; 2010. p. 807\u2013814."},{"key":"119_CR22","doi-asserted-by":"crossref","unstructured":"Narin A, Ceren K, Ziynet P. Automatic detection of coronavirus disease (covid-19) using X-ray images and deep convolutional neural networks. arXiv:2003.10849; 2020.","DOI":"10.1007\/s10044-021-00984-y"},{"issue":"2020","key":"119_CR23","doi-asserted-by":"publisher","first-page":"103792","DOI":"10.1016\/j.compbiomed.2020.103792","volume":"121","author":"T Ozturk","year":"2020","unstructured":"Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharyaf UR. Automated detection of covid-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121(2020):103792. https:\/\/doi.org\/10.1016\/j.compbiomed.2020.103792.","journal-title":"Comput Biol Med"},{"key":"119_CR24","doi-asserted-by":"crossref","unstructured":"Scherer D, M\u00fcller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. In: 20th international conference on artificial neural networks (ICANN); 2010. p. 92\u2013101.","DOI":"10.1007\/978-3-642-15825-4_10"},{"key":"119_CR25","doi-asserted-by":"crossref","unstructured":"Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE international conference on computer vision (ICCV); 2017. p. 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"},{"key":"119_CR26","unstructured":"Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556; 2014."},{"key":"119_CR27","unstructured":"SIRM: Covid-19 database. https:\/\/www.sirm.org\/category\/senza-categoria\/covid-19\/."},{"key":"119_CR28","doi-asserted-by":"publisher","unstructured":"Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition (CVPR). 2016; https:\/\/doi.org\/10.1109\/CVPR.2016.308.","DOI":"10.1109\/CVPR.2016.308"},{"key":"119_CR29","doi-asserted-by":"crossref","unstructured":"Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of IEEE conference on computer vision and pattern recognition; 2016.","DOI":"10.1109\/CVPR.2016.308"},{"key":"119_CR30","unstructured":"Tan M, Le QV. Efficientnet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946; 2019."},{"key":"119_CR31","doi-asserted-by":"crossref","unstructured":"Wang L, Wong A. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images. arXiv:2003.09871; 2020.","DOI":"10.1038\/s41598-020-76550-z"},{"key":"119_CR32","doi-asserted-by":"publisher","unstructured":"Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, Xu B. A deep learning algorithm using CT images to screen for corona virus disease (covid-19). medRxiv 2020.02.14.20023028 (2020). https:\/\/doi.org\/10.1101\/2020.02.14.20023028.","DOI":"10.1101\/2020.02.14.20023028"},{"key":"119_CR33","unstructured":"World Health Organization: Covid-19 pandemic. https:\/\/www.who.int\/emergencies\/diseases\/novel-coronavirus-2019."},{"key":"119_CR34","unstructured":"World Health Organization: Covid-2019 situation reports. https:\/\/www.who.int\/emergencies\/diseases\/novel-coronavirus-2019\/situation-reports\/."},{"key":"119_CR35","unstructured":"World Health Organization: Use of chest imaging in covid-19 (2020). https:\/\/www.who.int\/publications\/i\/item\/use-of-chest-imaging-in-covid-19."},{"key":"119_CR36","unstructured":"Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. In: International conference on learning representations (ICLR); 2016."},{"key":"119_CR37","doi-asserted-by":"publisher","unstructured":"Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X. Deep learning-based detection for covid-19 from chest CT using weak label. medRXiv: https:\/\/doi.org\/10.1101\/2020.03.12.20027185; 2020.","DOI":"10.1101\/2020.03.12.20027185"},{"key":"119_CR38","doi-asserted-by":"crossref","unstructured":"Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: IEEE conference on computer vision and pattern recognition (CVPR); 2016.","DOI":"10.1109\/CVPR.2016.319"}],"container-title":["Health Information Science and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13755-020-00119-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13755-020-00119-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13755-020-00119-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,20]],"date-time":"2021-09-20T23:22:18Z","timestamp":1632180138000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13755-020-00119-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,21]]},"references-count":38,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["119"],"URL":"https:\/\/doi.org\/10.1007\/s13755-020-00119-3","relation":{},"ISSN":["2047-2501"],"issn-type":[{"value":"2047-2501","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,9,21]]},"assertion":[{"value":"15 July 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 September 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 September 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}],"article-number":"27"}}