{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T05:56:48Z","timestamp":1723010208198},"reference-count":78,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,6,3]],"date-time":"2021-06-03T00:00:00Z","timestamp":1622678400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,6,3]],"date-time":"2021-06-03T00:00:00Z","timestamp":1622678400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Prog Artif Intell"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1007\/s13748-021-00247-1","type":"journal-article","created":{"date-parts":[[2021,6,3]],"date-time":"2021-06-03T12:06:12Z","timestamp":1622721972000},"page":"433-447","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Text categorization based on a new classification by thresholds"],"prefix":"10.1007","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8574-7618","authenticated-orcid":false,"given":"Walid","family":"Cherif","sequence":"first","affiliation":[]},{"given":"Abdellah","family":"Madani","sequence":"additional","affiliation":[]},{"given":"Mohamed","family":"Kissi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,3]]},"reference":[{"issue":"3","key":"247_CR1","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1016\/j.ipm.2018.11.011","volume":"56","author":"G P\u00e9rez-Rodr\u00edguez","year":"2019","unstructured":"P\u00e9rez-Rodr\u00edguez, G., P\u00e9rez-P\u00e9rez, M., Fdez-Riverola, F., Louren\u00e7o, A.: Online visibility of software-related web sites: the case of biomedical text mining tools. Inf. Process. Manag. 56(3), 565\u2013583 (2019)","journal-title":"Inf. Process. Manag."},{"issue":"1","key":"247_CR2","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/j.ijresmar.2018.09.009","volume":"36","author":"J Hartmann","year":"2019","unstructured":"Hartmann, J., Huppertz, J., Schamp, C., Heitmann, M.: Comparing automated text classification methods. Int. J. Res. Mark. 36(1), 20\u201338 (2019)","journal-title":"Int. J. Res. Mark."},{"issue":"5","key":"247_CR3","doi-asserted-by":"publisher","first-page":"1043","DOI":"10.1016\/j.ipm.2017.04.003","volume":"53","author":"M Kakol","year":"2017","unstructured":"Kakol, M., Nielek, R., Wierzbicki, A.: Understanding and predicting Web content credibility using the Content Credibility Corpus. Inf. Process. Manag. 53(5), 1043\u20131061 (2017)","journal-title":"Inf. Process. Manag."},{"issue":"1","key":"247_CR4","doi-asserted-by":"publisher","first-page":"e9","DOI":"10.1002\/spy2.9","volume":"1","author":"H Ahmed","year":"2018","unstructured":"Ahmed, H., Traore, I., Saad, S.: Detecting opinion spams and fake news using text classification. Secur Priv 1(1), e9 (2018)","journal-title":"Secur Priv"},{"issue":"3","key":"247_CR5","doi-asserted-by":"publisher","first-page":"627","DOI":"10.1007\/s00500-016-2446-x","volume":"21","author":"J-P Posadas-Dur\u00e1n","year":"2017","unstructured":"Posadas-Dur\u00e1n, J.-P., G\u00f3mez-Adorno, H., Sidorov, G., Batyrshin, I., Pinto, D., Chanona-Hern\u00e1ndez, L.: Application of the distributed document representation in the authorship attribution task for small corpora. Soft Comput. 21(3), 627\u2013639 (2017)","journal-title":"Soft Comput."},{"key":"247_CR6","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1016\/j.eswa.2016.10.043","volume":"69","author":"M Giatsoglou","year":"2017","unstructured":"Giatsoglou, M., Vozalis, M.G., Diamantaras, K., Vakali, A., Sarigiannidis, G., Chatzisavvas, K.C.: Sentiment analysis leveraging emotions and word embeddings. Expert Syst. Appl. 69, 214\u2013224 (2017)","journal-title":"Expert Syst. Appl."},{"key":"247_CR7","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1016\/j.procs.2015.12.057","volume":"73","author":"W Cherif","year":"2015","unstructured":"Cherif, W., Madani, A., Kissi, M.: Towards an efficient opinion measurement in Arabic comments. Procedia Comput. Sci. 73, 122\u2013129 (2015)","journal-title":"Procedia Comput. Sci."},{"issue":"2","key":"247_CR8","doi-asserted-by":"publisher","first-page":"385","DOI":"10.1162\/COLI_a_00052","volume":"37","author":"P Petrenz","year":"2011","unstructured":"Petrenz, P., Webber, B.: Stable classification of text genres. Comput. Linguist. 37(2), 385\u2013393 (2011)","journal-title":"Comput. Linguist."},{"issue":"3","key":"247_CR9","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1145\/1324185.1324190","volume":"36","author":"A Stavrianou","year":"2007","unstructured":"Stavrianou, A., Andritsos, P., Nicoloyannis, N.: Overview and semantic issues of text mining. ACM Sigmod Rec. 36(3), 23\u201334 (2007)","journal-title":"ACM Sigmod Rec."},{"key":"247_CR10","doi-asserted-by":"publisher","first-page":"288","DOI":"10.1016\/j.procs.2018.11.061","volume":"145","author":"A Kostkina","year":"2018","unstructured":"Kostkina, A., Bodunkov, D., Klimov, V.: Document categorization based on usage of features reduction with synonyms clustering in weak semantic map. Procedia Comput. Sci. 145, 288\u2013292 (2018)","journal-title":"Procedia Comput. Sci."},{"key":"247_CR11","doi-asserted-by":"publisher","first-page":"756","DOI":"10.1016\/j.procs.2018.04.321","volume":"131","author":"R Wang","year":"2018","unstructured":"Wang, R., Chen, G., Sui, X.: Multi label text classification method based on co-occurrence latent semantic vector space. Procedia Comput. Sci. 131, 756\u2013764 (2018)","journal-title":"Procedia Comput. Sci."},{"issue":"1","key":"247_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/505282.505283","volume":"34","author":"F Sebastiani","year":"2002","unstructured":"Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1\u201347 (2002)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"247_CR13","unstructured":"Manikandan, R., Sivakumar, R.: Machine learning algorithms for text-documents classification: a review. Mach. Learn. 3(2), 384\u2013389 (2018)"},{"key":"247_CR14","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1016\/j.jocs.2018.04.016","volume":"26","author":"JM Alostad","year":"2018","unstructured":"Alostad, J.M.: Dimensionality scale back in massive datasets using PDLPP. J. Comput. Sci. 26, 141\u2013146 (2018)","journal-title":"J. Comput. Sci."},{"key":"247_CR15","doi-asserted-by":"crossref","unstructured":"Leopold, E., May, M., Paa\u00df, G.: Data mining and text mining for science and technology research. In: Handbook of quantitative science and technology research, pp. 187\u2013213. Springer, Dordrecht (2004)","DOI":"10.1007\/1-4020-2755-9_9"},{"key":"247_CR16","doi-asserted-by":"crossref","unstructured":"Virmani, D., Taneja, S.: A text preprocessing approach for efficacious information retrieval. In: Smart innovations in communication and computational sciences, pp. 13\u201322. Springer, Singapore (2019)","DOI":"10.1007\/978-981-10-8968-8_2"},{"key":"247_CR17","unstructured":"Joachims, T.: A Probabilistic analysis of the rocchio algorithm with TFIDF for text categorization (No. CMU-CS-96-118). Carnegie-mellon univ pittsburgh pa dept of computer science (1996)"},{"key":"247_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s13369-019-03920-9","volume":"44","author":"T Dogan","year":"2019","unstructured":"Dogan, T., Uysal, A.K.: On term frequency factor in supervised term weighting schemes for text classification. Arab. J. Sci. Eng. 44, 1\u201316 (2019)","journal-title":"Arab. J. Sci. Eng."},{"key":"247_CR19","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.patrec.2017.12.025","volume":"103","author":"DS Guru","year":"2018","unstructured":"Guru, D.S., Suhil, M., Raju, L.N., Kumar, N.V.: An alternative framework for univariate filter-based feature selection for text categorization. Pattern Recognit. Lett. 103, 23\u201331 (2018)","journal-title":"Pattern Recognit. Lett."},{"key":"247_CR20","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.ins.2018.10.006","volume":"477","author":"D Kim","year":"2019","unstructured":"Kim, D., Seo, D., Cho, S., Kang, P.: Multi-co-training for document classification using various document representations: TF\u2013IDF, LDA, and Doc2Vec. Inf. Sci. 477, 15\u201329 (2019)","journal-title":"Inf. Sci."},{"issue":"1","key":"247_CR21","first-page":"45","volume":"8","author":"VMA Bai","year":"2017","unstructured":"Bai, V.M.A., Manimegalai, D.: Analysis of feature selection measures for text categorization. Int. J. Enterp. Netw. Manag. 8(1), 45\u201360 (2017)","journal-title":"Int. J. Enterp. Netw. Manag."},{"key":"247_CR22","doi-asserted-by":"crossref","unstructured":"Lang, K.: Newsweeder: learning to filter netnews. In: Machine learning proceedings 1995, pp. 331\u2013339. Morgan Kaufmann (1995)","DOI":"10.1016\/B978-1-55860-377-6.50048-7"},{"issue":"3","key":"247_CR23","doi-asserted-by":"publisher","first-page":"404","DOI":"10.1145\/321075.321084","volume":"8","author":"ME Maron","year":"1961","unstructured":"Maron, M.E.: Automatic indexing: an experimental inquiry. J. ACM (JACM) 8(3), 404\u2013417 (1961)","journal-title":"J. ACM (JACM)"},{"key":"247_CR24","doi-asserted-by":"crossref","unstructured":"Sebastiani, F.: Text categorization. In: Encyclopedia of database technologies and applications, pp. 683\u2013687. IGI Global (2005)","DOI":"10.4018\/978-1-59140-560-3.ch112"},{"key":"247_CR25","unstructured":"Hayes, P.J., Andersen, P.M., Nirenburg, I.B., Schmandt, L.M.: Tcs: a shell for content-based text categorization. In: Sixth conference on artificial intelligence for applications, pp. 320\u2013326. IEEE (1990)"},{"issue":"1\u20132","key":"247_CR26","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1023\/A:1009982220290","volume":"1","author":"Y Yang","year":"1999","unstructured":"Yang, Y.: An evaluation of statistical approaches to text categorization. Inf. Retrieval 1(1\u20132), 69\u201390 (1999)","journal-title":"Inf. Retrieval"},{"issue":"1","key":"247_CR27","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1177\/0165551516677946","volume":"44","author":"S Xu","year":"2018","unstructured":"Xu, S.: Bayesian Na\u00efve Bayes classifiers to text classification. J. Inf. Sci. 44(1), 48\u201359 (2018)","journal-title":"J. Inf. Sci."},{"key":"247_CR28","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1016\/j.knosys.2016.02.017","volume":"100","author":"L Zhang","year":"2016","unstructured":"Zhang, L., Jiang, L., Li, C., Kong, G.: Two feature weighting approaches for naive Bayes text classifiers. Knowl.-Based Syst. 100, 137\u2013144 (2016)","journal-title":"Knowl.-Based Syst."},{"key":"247_CR29","doi-asserted-by":"crossref","unstructured":"Hassaine, A., Mecheter, S., Jaoua, A.: Text categorization using hyper rectangular keyword extraction: application to news articles classification. In: International conference on relational and algebraic methods in computer science, pp. 312\u2013325. Springer, Cham (2015)","DOI":"10.1007\/978-3-319-24704-5_19"},{"key":"247_CR30","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/j.eswa.2015.12.004","volume":"49","author":"AS Ghareb","year":"2016","unstructured":"Ghareb, A.S., Bakar, A.A., Hamdan, A.R.: Hybrid feature selection based on enhanced genetic algorithm for text categorization. Expert Syst. Appl. 49, 31\u201347 (2016)","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"247_CR31","first-page":"254","volume":"7","author":"AK Nikhath","year":"2016","unstructured":"Nikhath, A.K., Subrahmanyam, K., Vasavi, R.: Building a K-nearest neighbor classifier for text categorization. Int. J. Comput. Sci. Inf. Technol. 7(1), 254\u2013256 (2016)","journal-title":"Int. J. Comput. Sci. Inf. Technol."},{"key":"247_CR32","doi-asserted-by":"crossref","unstructured":"Jo, T.: String vector based KNN for text categorization. In: 2018 20th international conference on advanced communication technology (ICACT), pp. 438\u2013443. IEEE (2018)","DOI":"10.23919\/ICACT.2018.8323785"},{"issue":"8","key":"247_CR33","doi-asserted-by":"publisher","first-page":"900","DOI":"10.1016\/j.knosys.2008.03.045","volume":"21","author":"B Yu","year":"2008","unstructured":"Yu, B., Xu, Z.B., Li, C.H.: Latent semantic analysis for text categorization using neural network. Knowl.-Based Syst. 21(8), 900\u2013904 (2008)","journal-title":"Knowl.-Based Syst."},{"key":"247_CR34","doi-asserted-by":"publisher","first-page":"1124","DOI":"10.1016\/j.procs.2015.07.400","volume":"57","author":"B Ramesh","year":"2015","unstructured":"Ramesh, B., Sathiaseelan, J.G.R.: An advanced multi class instance selection-based support vector machine for text classification. Procedia Comput. Sci. 57, 1124\u20131130 (2015)","journal-title":"Procedia Comput. Sci."},{"key":"247_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11633-015-0912-z","volume":"15","author":"M Goudjil","year":"2018","unstructured":"Goudjil, M., Koudil, M., Bedda, M., Ghoggali, N.: A novel active learning method using SVM for text classification. Int. J. Autom. Comput. 15, 1\u20139 (2018)","journal-title":"Int. J. Autom. Comput."},{"issue":"3","key":"247_CR36","doi-asserted-by":"publisher","first-page":"3797","DOI":"10.1007\/s11042-018-6083-5","volume":"78","author":"X Deng","year":"2019","unstructured":"Deng, X., Li, Y., Weng, J., Zhang, J.: Feature selection for text classification: a review. Multimed. Tools Appl. 78(3), 3797\u20133816 (2019)","journal-title":"Multimed. Tools Appl."},{"key":"247_CR37","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1016\/j.eswa.2018.11.018","volume":"120","author":"X Tang","year":"2019","unstructured":"Tang, X., Dai, Y., Xiang, Y.: Feature selection based on feature interactions with application to text categorization. Expert Syst. Appl. 120, 207\u2013216 (2019)","journal-title":"Expert Syst. Appl."},{"issue":"4","key":"247_CR38","doi-asserted-by":"publisher","first-page":"445","DOI":"10.1007\/s10869-017-9528-3","volume":"33","author":"GC Banks","year":"2018","unstructured":"Banks, G.C., Woznyj, H.M., Wesslen, R.S., Ross, R.L.: A review of best practice recommendations for text analysis in R (and a user-friendly app). J. Bus. Psychol. 33(4), 445\u2013459 (2018)","journal-title":"J. Bus. Psychol."},{"issue":"3\u20134","key":"247_CR39","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1504\/IJKEDM.2015.074082","volume":"3","author":"W Cherif","year":"2015","unstructured":"Cherif, W., Madani, A., Kissi, M.: New rules-based algorithm to improve Arabic stemming accuracy. Int. J. Knowl. Eng. Data Min. 3(3\u20134), 315\u2013336 (2015)","journal-title":"Int. J. Knowl. Eng. Data Min."},{"key":"247_CR40","doi-asserted-by":"crossref","unstructured":"Das, A.K., Das, A.K., Sarkar, A.: An Evolutionary Algorithm-Based Text Categorization Technique. In: Computational intelligence in data mining, pp. 851\u2013861. Springer, Singapore (2019)","DOI":"10.1007\/978-981-10-8055-5_75"},{"key":"247_CR41","unstructured":"Murphy, G., & Cubranic, D.: Automatic bug triage using text categorization. In: Proceedings of the sixteenth international conference on software engineering and knowledge engineering, pp. 261\u2013272 (2004)"},{"issue":"1","key":"247_CR42","first-page":"60","volume":"1","author":"V Gupta","year":"2009","unstructured":"Gupta, V., Lehal, G.S.: A survey of text mining techniques and applications. J. Emerg. Technol. Web Intell. 1(1), 60\u201376 (2009)","journal-title":"J. Emerg. Technol. Web Intell."},{"issue":"1","key":"247_CR43","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1145\/1007730.1007741","volume":"6","author":"Z Zheng","year":"2004","unstructured":"Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. ACM SIGKDD Explor. Newsl. 6(1), 80\u201389 (2004)","journal-title":"ACM SIGKDD Explor. Newsl."},{"key":"247_CR44","unstructured":"Jo, T.: K nearest neighbor for text categorization using feature similarity. In: Advanced engineering and ICT\u2013convergence 2019 (ICAEIC-2019), p. 99 (2019)"},{"issue":"4","key":"247_CR45","doi-asserted-by":"publisher","first-page":"587","DOI":"10.1002\/jrsm.1317","volume":"9","author":"A Langlois","year":"2018","unstructured":"Langlois, A., Nie, J.Y., Thomas, J., Hong, Q.N., Pluye, P.: Discriminating between empirical studies and nonempirical works using automated text classification. Res. Synth. Methods 9(4), 587\u2013601 (2018)","journal-title":"Res. Synth. Methods"},{"key":"247_CR46","doi-asserted-by":"crossref","unstructured":"Zhang, T., Ge, S.S.: An improved TF-IDF algorithm based on class discriminative strength for text categorization on desensitized data. In: Proceedings of the 2019 3rd international conference on innovation in artificial intelligence, pp. 39\u201344. ACM (2019)","DOI":"10.1145\/3319921.3319924"},{"key":"247_CR47","first-page":"1289","volume":"3","author":"G Forman","year":"2003","unstructured":"Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289\u20131305 (2003)","journal-title":"J. Mach. Learn. Res."},{"issue":"2","key":"247_CR48","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1016\/j.ipm.2016.12.004","volume":"53","author":"A Rehman","year":"2017","unstructured":"Rehman, A., Javed, K., Babri, H.A.: Feature selection based on a normalized difference measure for text classification. Inf. Process. Manag. 53(2), 473\u2013489 (2017)","journal-title":"Inf. Process. Manag."},{"key":"247_CR49","doi-asserted-by":"publisher","first-page":"256","DOI":"10.1016\/j.jpdc.2017.06.022","volume":"117","author":"S Hussain","year":"2018","unstructured":"Hussain, S., Keung, J., Khan, A.A., Ahmad, A., Cuomo, S., Piccialli, F., Jeon, G., Akhunzada, A.: Implications of deep learning for the automation of design patterns organization. J. Parallel Distrib. Comput. 117, 256\u2013266 (2018)","journal-title":"J. Parallel Distrib. Comput."},{"key":"247_CR50","doi-asserted-by":"crossref","unstructured":"Premchander, K., Sarma, S.S.V.N., Vaishali, K., Reddy, P.V., Anjaneyulu, M., Nagaprasad, S.: WordNet-based text categorization using convolutional neural networks. In: Proceedings of International Conference on Recent Advancement on Computer and Communication, pp. 243\u2013251. Springer, Singapore (2018)","DOI":"10.1007\/978-981-10-8198-9_25"},{"key":"247_CR51","first-page":"10","volume":"5","author":"X Tao","year":"2018","unstructured":"Tao, X., Yaling, W., Nan, M.: Convolutional neural network based on word sense disambiguation for text classification. Appl. Res. Comput. 5, 10 (2018)","journal-title":"Appl. Res. Comput."},{"issue":"2","key":"247_CR52","first-page":"106","volume":"16","author":"X Wang","year":"2018","unstructured":"Wang, X., Kim, H.C.: Text categorization with improved deep learning methods. J. Inf. Commun. Converg. Eng. 16(2), 106\u2013113 (2018)","journal-title":"J. Inf. Commun. Converg. Eng."},{"issue":"2","key":"247_CR53","doi-asserted-by":"publisher","first-page":"575","DOI":"10.3390\/make1020034","volume":"1","author":"B \u0160krlj","year":"2019","unstructured":"\u0160krlj, B., Kralj, J., Lavra\u010d, N., Pollak, S.: Towards robust text classification with semantics-aware recurrent neural architecture. Mach. Learn. Knowl. Extr. 1(2), 575\u2013589 (2019)","journal-title":"Mach. Learn. Knowl. Extr."},{"issue":"1","key":"247_CR54","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1007\/s00521-016-2401-x","volume":"29","author":"M Jiang","year":"2018","unstructured":"Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y., Guan, R.: Text classification based on deep belief network and softmax regression. Neural Comput. Appl. 29(1), 61\u201370 (2018)","journal-title":"Neural Comput. Appl."},{"key":"247_CR55","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1016\/j.knosys.2018.03.003","volume":"149","author":"ES Tellez","year":"2018","unstructured":"Tellez, E.S., Moctezuma, D., Miranda-Jim\u00e9nez, S., Graff, M.: An automated text categorization framework based on hyperparameter optimization. Knowl.-Based Syst. 149, 110\u2013123 (2018)","journal-title":"Knowl.-Based Syst."},{"key":"247_CR56","doi-asserted-by":"crossref","unstructured":"Shah, F.P., Patel, V.: A review on feature selection and feature extraction for text classification. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2264\u20132268. IEEE (2016)","DOI":"10.1109\/WiSPNET.2016.7566545"},{"key":"247_CR57","doi-asserted-by":"crossref","unstructured":"Greene, D., Cunningham, P.: Practical solutions to the problem of diagonal dominance in kernel document clustering. In: Proceedings of the 23rd International Conference on Machine learning, pp. 377\u2013384 (2006)","DOI":"10.1145\/1143844.1143892"},{"issue":"1\u20133","key":"247_CR58","doi-asserted-by":"publisher","first-page":"423","DOI":"10.1023\/A:1012491419635","volume":"46","author":"E Leopold","year":"2002","unstructured":"Leopold, E., Kindermann, J.: Text categorization with support vector machines. How to represent texts in input space? Mach. Learn. 46(1\u20133), 423\u2013444 (2002)","journal-title":"Mach. Learn."},{"key":"247_CR59","unstructured":"Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649\u2013657 (2015)"},{"issue":"4","key":"247_CR60","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","volume":"45","author":"M Sokolova","year":"2009","unstructured":"Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427\u2013437 (2009)","journal-title":"Inf. Process. Manag."},{"key":"247_CR61","doi-asserted-by":"crossref","unstructured":"Lilleberg, J., Zhu, Y., Zhang, Y.: Support vector machines and word2vec for text classification with semantic features. In: 2015 IEEE 14th International Conference on Cognitive Informatics and Cognitive Computing (ICCI* CC), pp. 136\u2013140 (2015)","DOI":"10.1109\/ICCI-CC.2015.7259377"},{"key":"247_CR62","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.engappai.2017.12.014","volume":"70","author":"M Labani","year":"2018","unstructured":"Labani, M., Moradi, P., Ahmadizar, F., Jalili, M.: A novel multivariate filter method for feature selection in text classification problems. Eng. Appl. Artif. Intell. 70, 25\u201337 (2018)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"247_CR63","doi-asserted-by":"crossref","unstructured":"Bramesh, S.M., Kumar, K.A.: Empirical study to evaluate the performance of classification algorithms on public datasets. In: Emerging Research in Electronics, Computer Science and Technology, pp. 447\u2013455. Springer, Singapore (2019)","DOI":"10.1007\/978-981-13-5802-9_41"},{"key":"247_CR64","unstructured":"Chowdhury, S.B.R., Annervaz, K.M., Dukkipati, A.: Instance-based inductive deep transfer learning by cross-dataset querying with locality sensitive hashing (2018)"},{"key":"247_CR65","doi-asserted-by":"crossref","unstructured":"Pappagari, R., Villalba, J., Dehak, N.: Joint verification-identification in end-to-end multi-scale CNN framework for topic identification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6199\u20136203 (2018)","DOI":"10.1109\/ICASSP.2018.8461673"},{"key":"247_CR66","doi-asserted-by":"crossref","unstructured":"Kadhim, A.I., Cheah, Y.N., Ahamed, N.H.: Text document preprocessing and dimension reduction techniques for text document clustering. In: 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, pp. 69\u201373. IEEE (2014)","DOI":"10.1109\/ICAIET.2014.21"},{"key":"247_CR67","doi-asserted-by":"crossref","unstructured":"Camacho-Collados, J., Pilehvar, M.T.: On the role of text preprocessing in neural network architectures: an evaluation study on text categorization and sentiment analysis (2017). arXiv:1707.01780","DOI":"10.18653\/v1\/W18-5406"},{"key":"247_CR68","doi-asserted-by":"crossref","unstructured":"Asim, M.N., Khan, M.U.G., Malik, M.I., Dengel, A., Ahmed, S.: A robust hybrid approach for textual document classification. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1390\u20131396. IEEE (2019)","DOI":"10.1109\/ICDAR.2019.00224"},{"key":"247_CR69","doi-asserted-by":"crossref","unstructured":"Elghannam, F.: Text representation and classification based on bi-gram alphabet. J. King Saud Univ. Comput. Inf. Sci. 33(2), 235\u2013242 (2021)","DOI":"10.1016\/j.jksuci.2019.01.005"},{"issue":"3","key":"247_CR70","first-page":"2513","volume":"4","author":"L Pradhan","year":"2017","unstructured":"Pradhan, L., Taneja, N.A., Dixit, C., Suhag, M.: Comparison of text classifiers on news articles. Int. Res. J. Eng. Technol. 4(3), 2513\u20132517 (2017)","journal-title":"Int. Res. J. Eng. Technol."},{"key":"247_CR71","doi-asserted-by":"crossref","unstructured":"Aziguli, W., Zhang, Y., Xie, Y., Zhang, D., Luo, X., Li, C., & Zhang, Y.: A robust text classifier based on denoising deep neural network in the analysis of big data. Sci. Program. 2017(1), 3610378 (2017)","DOI":"10.1155\/2017\/3610378"},{"key":"247_CR72","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1016\/j.eswa.2018.07.024","volume":"113","author":"B Al-Salemi","year":"2018","unstructured":"Al-Salemi, B., Ayob, M., Noah, S.A.M.: Feature ranking for enhancing boosting-based multi-label text categorization. Expert Syst. Appl. 113, 531\u2013543 (2018)","journal-title":"Expert Syst. Appl."},{"key":"247_CR73","doi-asserted-by":"crossref","unstructured":"Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: An kNN model-based approach and its application in text categorization. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 559\u2013570. Springer, Berlin, Heidelberg (2004)","DOI":"10.1007\/978-3-540-24630-5_69"},{"key":"247_CR74","unstructured":"Yogatama, D., Dyer, C., Ling, W., Blunsom, P.: Generative and discriminative text classification with recurrent neural networks (2017). arXiv:1703.01898"},{"key":"247_CR75","doi-asserted-by":"crossref","unstructured":"Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolutional neural networks for short text classification. In: IJCAI, vol. 350 (2017)","DOI":"10.24963\/ijcai.2017\/406"},{"key":"247_CR76","doi-asserted-by":"crossref","unstructured":"Wang, B.: Disconnected recurrent neural networks for text categorization. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2311\u20132320 (2018)","DOI":"10.18653\/v1\/P18-1215"},{"key":"247_CR77","doi-asserted-by":"crossref","unstructured":"Marivate, V., Sefara, T.: Improving short text classification through global augmentation methods. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction, pp. 385\u2013399. Springer, Cham (2020)","DOI":"10.1007\/978-3-030-57321-8_21"},{"issue":"2","key":"247_CR78","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/s13748-019-00178-y","volume":"8","author":"H Khalifi","year":"2019","unstructured":"Khalifi, H., Cherif, W., El Qadi, A., Ghanou, Y.: Query expansion based on clustering and personalized information retrieval. Prog. Artif. Intell. 8(2), 241\u2013251 (2019)","journal-title":"Prog. Artif. Intell."}],"container-title":["Progress in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13748-021-00247-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13748-021-00247-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13748-021-00247-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,3]],"date-time":"2023-02-03T13:04:36Z","timestamp":1675429476000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13748-021-00247-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,3]]},"references-count":78,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["247"],"URL":"https:\/\/doi.org\/10.1007\/s13748-021-00247-1","relation":{},"ISSN":["2192-6352","2192-6360"],"issn-type":[{"value":"2192-6352","type":"print"},{"value":"2192-6360","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,3]]},"assertion":[{"value":"26 November 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 May 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 June 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}