{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:07:08Z","timestamp":1714540028057},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"2-3","license":[{"start":{"date-parts":[[2014,2,27]],"date-time":"2014-02-27T00:00:00Z","timestamp":1393459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Prog Artif Intell"],"published-print":{"date-parts":[[2014,6]]},"DOI":"10.1007\/s13748-014-0042-9","type":"journal-article","created":{"date-parts":[[2014,2,26]],"date-time":"2014-02-26T19:13:26Z","timestamp":1393442006000},"page":"97-111","source":"Crossref","is-referenced-by-count":22,"title":["Accuracy\u2013diversity based pruning of classifier ensembles"],"prefix":"10.1007","volume":"2","author":[{"given":"Vasudha","family":"Bhatnagar","sequence":"first","affiliation":[]},{"given":"Manju","family":"Bhardwaj","sequence":"additional","affiliation":[]},{"given":"Shivam","family":"Sharma","sequence":"additional","affiliation":[]},{"given":"Sufyan","family":"Haroon","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2014,2,27]]},"reference":[{"issue":"1","key":"42_CR1","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.inffus.2004.04.005","volume":"6","author":"RE Banfield","year":"2005","unstructured":"Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble diversity measures and their applications to thinning. Inf. Fusion 6(1), 49\u201362 (2005)","journal-title":"Inf. Fusion"},{"key":"42_CR2","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24, 123\u2013140 (1996)","journal-title":"Mach. Learn."},{"key":"42_CR3","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45, 5\u201332 (2001)","journal-title":"Mach. Learn."},{"key":"42_CR4","doi-asserted-by":"crossref","unstructured":"Brown, G., Kuncheva, L.I.: \u201cGood\u201d and \u201cbad\u201d diversity in majority vote ensembles. In: MCS 2010, pp. 124\u2013133 (2010)","DOI":"10.1007\/978-3-642-12127-2_13"},{"issue":"1","key":"42_CR5","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/j.inffus.2004.04.004","volume":"6","author":"G Brown","year":"2005","unstructured":"Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5\u201320 (2005)","journal-title":"Inf. Fusion"},{"key":"42_CR6","doi-asserted-by":"crossref","unstructured":"Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble selection. In: Proceedings of the Sixth International Conference on Data Mining, ICDM \u201906, pp. 828\u2013833. IEEE Computer Society (2006)","DOI":"10.1109\/ICDM.2006.76"},{"key":"42_CR7","doi-asserted-by":"crossref","unstructured":"Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: Proceedings of the twenty-first international conference on Machine learning, ICML \u201904. ACM (2004)","DOI":"10.1145\/1015330.1015432"},{"issue":"7","key":"42_CR8","doi-asserted-by":"crossref","first-page":"999","DOI":"10.1109\/TKDE.2009.62","volume":"21","author":"H Chen","year":"2009","unstructured":"Chen, H., Tiho, P., Yao, X.: Predictive ensemble pruning by expectation propagation. IEEE Trans. Knowl. Data Eng. 21(7), 999\u20131013 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"42_CR9","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.knosys.2012.08.024","volume":"37","author":"Q Dai","year":"2013","unstructured":"Dai, Q.: A competitive ensemble pruning approach based on cross-validation technique. Knowl. Based Syst. 37, 394\u2013414 (2013)","journal-title":"Knowl. Based Syst."},{"key":"42_CR10","first-page":"1","volume":"7","author":"J Demsar","year":"2006","unstructured":"Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"key":"42_CR11","doi-asserted-by":"crossref","unstructured":"Didaci, L., Fumera, G., Roli, F.: Diversity in classifier ensembles: fertile concept or dead end? In: Zhou, Z.H., Roli, F., Kittler, J. (eds.) Multiple classifier systems. Lecture Notes in Computer Science, vol. 7872, pp. 37\u201348. Springer, Berlin (2013)","DOI":"10.1007\/978-3-642-38067-9_4"},{"key":"42_CR12","doi-asserted-by":"crossref","unstructured":"Dietterich, T.: Ensemble methods in machine learning. In: International workshop on Multiple Classifier Systems, pp. 1\u201310 (2000)","DOI":"10.1007\/3-540-45014-9_1"},{"key":"42_CR13","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1023\/A:1007607513941","volume":"40","author":"TG Dietterich","year":"2000","unstructured":"Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40, 139\u2013157 (2000)","journal-title":"Mach. Learn."},{"key":"42_CR14","unstructured":"Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley (2001)"},{"key":"42_CR15","unstructured":"Frank, A., Asuncion, A.: UCI machine learning repository (2010). http:\/\/archive.ics.uci.edu\/ml"},{"key":"42_CR16","unstructured":"Giacinto, G., Roli, F., Fumera, G.: Design of effective multiple classifier systems by clustering of classifiers. In: Proceedings of ICPR2000, 15th International Conference on Pattern Recognition, pp. 3\u20138 (2000)"},{"key":"42_CR17","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1016\/S0262-8856(01)00045-2","volume":"19","author":"G Giancinto","year":"2001","unstructured":"Giancinto, G., Roli, F.: Design of effective neural network ensembles for image classification purposes. Image Vis. Comput. J. 19, 699\u2013707 (2001)","journal-title":"Image Vis. Comput. J."},{"issue":"6","key":"42_CR18","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.patrec.2013.01.003","volume":"34","author":"L Guo","year":"2013","unstructured":"Guo, L., Boukir, S.: Margin-based ordered aggregation for ensemble pruning. Pattern Recognit. Lett. 34(6), 603\u2013609 (2013)","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"42_CR19","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10\u201318 (2009)","journal-title":"SIGKDD Explor."},{"key":"42_CR20","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/34.709601","volume":"20","author":"TK Ho","year":"1998","unstructured":"Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832\u2013844 (1998)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"42_CR21","unstructured":"Partalas, G.T., Vlahavas, I.: Focussed ensemble selection: a diversity based method for greedy ensemble selection. Front. Artif. Intell. Appl. pp. 117\u2013121 (2008)"},{"issue":"3","key":"42_CR22","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/34.667881","volume":"20","author":"J Kittler","year":"1998","unstructured":"Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226\u2013239 (1998)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"42_CR23","doi-asserted-by":"crossref","unstructured":"Ko, A.H.R., Sabourin, R., de Souza Britto Jr., A.: Compound diversity functions for ensemble selection. IJPRAI 23(4), 659\u2013686 (2009)","DOI":"10.1142\/S021800140900734X"},{"key":"42_CR24","unstructured":"Hoboken, L.I.: Combining pattern classifiers: methods and algorithms. Wiley-Interscience, Hoboken, New Jersey (2004)"},{"issue":"1","key":"42_CR25","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.patrec.2004.08.019","volume":"26","author":"LI Kuncheva","year":"2005","unstructured":"Kuncheva, L.I.: Using diversity measures for generating error-correcting output codes in classifier ensembles. Pattern Recognit. Lett. 26(1), 83\u201390 (2005)","journal-title":"Pattern Recognit. Lett."},{"key":"42_CR26","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1023\/A:1022859003006","volume":"51","author":"LI Kuncheva","year":"2003","unstructured":"Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with ensemble accuracy. Mach. Learn. 51, 181\u2013207 (2003)","journal-title":"Mach. Learn."},{"key":"42_CR27","doi-asserted-by":"crossref","unstructured":"Lam, L.: Classifier combinations: Implementations and theoretical issues. In: Multiple Classifier Systems, pp. 77\u201386 (2000)","DOI":"10.1007\/3-540-45014-9_7"},{"key":"42_CR28","doi-asserted-by":"crossref","unstructured":"Li, N., Yu, Y., Zhou, Z.H.: Diversity regularized ensemble pruning. In: Flach, P., Bie, T., Cristianini, N. (eds.) Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 7523, pp. 330\u2013345. Springer, Berlin (2012)","DOI":"10.1007\/978-3-642-33460-3_27"},{"key":"42_CR29","unstructured":"Lu, Z., Wu, X., Zhu, X., Bongard, J.: Ensemble pruning via individual contribution ordering. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD \u201910, pp. 871\u2013880. ACM (2010)."},{"key":"42_CR30","unstructured":"Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML \u201997, pp. 211\u2013218. Morgan Kaufmann Publishers Inc. (1997)"},{"issue":"1","key":"42_CR31","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1109\/TIT.1963.1057810","volume":"9","author":"T Marill","year":"2006","unstructured":"Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theor. 9(1), 11\u201317 (2006)","journal-title":"IEEE Trans. Inf. Theor."},{"key":"42_CR32","doi-asserted-by":"crossref","unstructured":"Mart\u00ednez-Mu\u00f1oz, G., Su\u00e1rez, A.: Pruning in ordered bagging ensembles. In: Proceedings of the 23rd international conference on Machine learning, ICML \u201906, pp. 609\u2013616. ACM (2006)","DOI":"10.1145\/1143844.1143921"},{"key":"42_CR33","unstructured":"Martinez-Munoz, G., Suarez, A.: Aggregation ordering in bagging. In: International Conference on Artificial intelligence and Applications (IASTED) pp. 258\u2013263 (2004)"},{"key":"42_CR34","unstructured":"Opitz, D.W.: Feature selection for ensembles. In: Proceedings of the 16th national conference on Artificial intelligence, AAAI \u201999\/IAAI \u201999, pp. 379\u2013384. American Association for Artificial Intelligence (1999)"},{"key":"42_CR35","unstructured":"Partalas, I., Tsoumakas, G., Vlahavas, I.: Focused ensemble selection: A diversity-based method for greedy ensemble selection. In: Proceeding of the 2008 conference on ECAI 2008: 18th European Conference on Artificial Intelligence, pp. 117\u2013121. IOS Press (2008)"},{"key":"42_CR36","doi-asserted-by":"crossref","unstructured":"Partalas, I., Tsoumakas, G., Vlahavas, I.: Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing 72, 1900\u20131909 (2008)","DOI":"10.1016\/j.neucom.2008.06.007"},{"issue":"4","key":"42_CR37","doi-asserted-by":"crossref","first-page":"1015","DOI":"10.1016\/j.csda.2008.12.001","volume":"53","author":"L Rokach","year":"2009","unstructured":"Rokach, L.: Collective-agreement-based pruning of ensembles. Comput. Stat. Data Anal. 53(4), 1015\u20131026 (2009)","journal-title":"Comput. Stat. Data Anal."},{"key":"42_CR38","doi-asserted-by":"crossref","unstructured":"Rokach, L., Maimon, O.: Data mining with decision trees: theroy and applications. World Scientific Publishing Co., Inc. (2008)","DOI":"10.1142\/6604"},{"key":"42_CR39","doi-asserted-by":"crossref","unstructured":"Tamon, C., Xiang, J.: On the boosting pruning problem. In: Proceedings of the 11th European Conference on Machine Learning, ECML \u201900, pp. 404\u2013412. Springer (2000)","DOI":"10.1007\/3-540-45164-1_41"},{"key":"42_CR40","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1007\/s10994-006-9449-2","volume":"65","author":"EK Tang","year":"2006","unstructured":"Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Mach. Learn. 65, 247\u2013271 (2006)","journal-title":"Mach. Learn."},{"key":"42_CR41","doi-asserted-by":"crossref","unstructured":"Tsoumakas, G., Partalas, I., Vlahavas, I.: Ensemble pruning primer. In: O. Okun, G. Valentini (eds.) Applications of supervised and unsupervised ensemble methods, vol. 245, pp. 1\u201313 Springer, Heidelberg (2009)","DOI":"10.1007\/978-3-642-03999-7_1"},{"key":"42_CR42","doi-asserted-by":"crossref","unstructured":"Webb, G.I., Zheng, Z.: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques. IEEE Trans. Knowl. Data Eng. 16, 980\u2013991 (2004)","DOI":"10.1109\/TKDE.2004.29"},{"key":"42_CR43","doi-asserted-by":"crossref","unstructured":"Zhang, P., Zhu, X., Shi, Y., Wu, X.: An aggregate ensemble for mining concept drifting data streams with noise. Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, vol. 5476, pp. 1021\u20131029. Springer, Berlin (2009)","DOI":"10.1007\/978-3-642-01307-2_109"},{"key":"42_CR44","first-page":"1315","volume":"7","author":"Y Zhang","year":"2006","unstructured":"Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7, 1315\u20131338 (2006)","journal-title":"J. Mach. Learn. Res."},{"key":"42_CR45","doi-asserted-by":"crossref","unstructured":"Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Proceedings of the 9th international conference on Rough sets, fuzzy sets, data mining, and granular computing, pp. 476\u2013483. Springer, Berlin (2003)","DOI":"10.1007\/3-540-39205-X_81"}],"container-title":["Progress in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13748-014-0042-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s13748-014-0042-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13748-014-0042-9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,8]],"date-time":"2019-08-08T00:37:11Z","timestamp":1565224631000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s13748-014-0042-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,2,27]]},"references-count":45,"journal-issue":{"issue":"2-3","published-print":{"date-parts":[[2014,6]]}},"alternative-id":["42"],"URL":"https:\/\/doi.org\/10.1007\/s13748-014-0042-9","relation":{},"ISSN":["2192-6352","2192-6360"],"issn-type":[{"value":"2192-6352","type":"print"},{"value":"2192-6360","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,2,27]]}}}