{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T05:58:55Z","timestamp":1717221535135},"reference-count":90,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,5,19]],"date-time":"2021-05-19T00:00:00Z","timestamp":1621382400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,5,19]],"date-time":"2021-05-19T00:00:00Z","timestamp":1621382400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Multimed Info Retr"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1007\/s13735-021-00210-9","type":"journal-article","created":{"date-parts":[[2021,5,19]],"date-time":"2021-05-19T10:02:52Z","timestamp":1621418572000},"page":"199-218","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Different techniques for Alzheimer\u2019s disease classification using brain images: a study"],"prefix":"10.1007","volume":"10","author":[{"given":"Ruhul Amin","family":"Hazarika","sequence":"first","affiliation":[]},{"given":"Ajith","family":"Abraham","sequence":"additional","affiliation":[]},{"given":"Samarendra Nath","family":"Sur","sequence":"additional","affiliation":[]},{"given":"Arnab Kumar","family":"Maji","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3409-5189","authenticated-orcid":false,"given":"Debdatta","family":"Kandar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,19]]},"reference":[{"key":"210_CR1","unstructured":"N.\u00a0C.\u00a0C. for Mental Health\u00a0UK, et\u00a0al (2007) Dementia. In: Dementia: a NICE-SCIE guideline on supporting people with dementia and their Carers in Health and Social Care, British Psychological Society"},{"issue":"1","key":"210_CR2","first-page":"24","volume":"4","author":"IO Korolev","year":"2014","unstructured":"Korolev IO (2014) Alzheimer\u2019s disease: a clinical and basic science review. Med Stud Res J 4(1):24\u201333","journal-title":"Med Stud Res J"},{"issue":"3","key":"210_CR3","doi-asserted-by":"publisher","first-page":"994","DOI":"10.1523\/JNEUROSCI.23-03-00994.2003","volume":"23","author":"PM Thompson","year":"2003","unstructured":"Thompson PM, Hayashi KM, De Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM et al (2003) Dynamics of gray matter loss in Alzheimer\u2019s disease. J Neurosci 23(3):994\u20131005. https:\/\/doi.org\/10.1523\/JNEUROSCI.23-03-00994.2003","journal-title":"J Neurosci"},{"issue":"1","key":"210_CR4","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1186\/s13195-016-0201-2","volume":"8","author":"R Banzi","year":"2016","unstructured":"Banzi R, Camaioni P, Tettamanti M, Lucca U et al (2016) Older patients are still under-represented in clinical trials of Alzheimer\u2019s disease. Alzheimer\u2019s Res Ther 8(1):32. https:\/\/doi.org\/10.1186\/s13195-016-0201-2","journal-title":"Alzheimer\u2019s Res Ther"},{"key":"210_CR5","unstructured":"NIH (2020) Alzheimer\u2019s disease: a clinical and basic science review. https:\/\/www.nia.nih.gov\/health\/alzheimers-disease-fact-sheet. Accessed 13 July 2020"},{"key":"210_CR6","unstructured":"A. Association, Alzheimer\u2019s Disease Fact Sheet. https:\/\/www.alz.org\/in\/dementia-alzheimers-en.asp#diagnosis. Accessed 13 July 2020"},{"issue":"1 Suppl 1","key":"210_CR7","doi-asserted-by":"publisher","first-page":"S45","DOI":"10.1212\/WNL.51.1_Suppl_1.S45","volume":"51","author":"JA Kaye","year":"1998","unstructured":"Kaye JA (1998) Diagnostic challenges in dementia. Neurology 51(1 Suppl 1):S45\u2013S52. https:\/\/doi.org\/10.1212\/WNL.51.1_Suppl_1.S45","journal-title":"Neurology"},{"issue":"4","key":"210_CR8","first-page":"463","volume":"2","author":"G Mahesh","year":"2014","unstructured":"Mahesh G, Tasneem S (2014) Biomarker controversies and diagnostic difficulties in Alzheimer\u2019s disease. Am J Phytomed Clin Therap 2(4):463\u20138","journal-title":"Am J Phytomed Clin Therap"},{"key":"210_CR9","doi-asserted-by":"crossref","unstructured":"Miller R (2000) Time and the brain. CRC Press","DOI":"10.4324\/9780203304570"},{"issue":"6","key":"210_CR10","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1177\/1756285612455733","volume":"5","author":"B Sheehan","year":"2012","unstructured":"Sheehan B (2012) Assessment scales in dementia. Therap Adv Neurol Disord 5(6):349\u2013358. https:\/\/doi.org\/10.1177\/1756285612455733","journal-title":"Therap Adv Neurol Disord"},{"issue":"1","key":"210_CR11","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.jalz.2016.09.014","volume":"13","author":"SE O\u2019Bryant","year":"2017","unstructured":"O\u2019Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, Lewczuk P, Posner H, Hall J, Johnson L et al (2017) Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer\u2019s Dement 13(1):45\u201358. https:\/\/doi.org\/10.1016\/j.jalz.2016.09.014","journal-title":"Alzheimer\u2019s Dement"},{"issue":"1","key":"210_CR12","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.tibtech.2010.09.007","volume":"29","author":"C Humpel","year":"2011","unstructured":"Humpel C (2011) Identifying and validating biomarkers for Alzheimer\u2019s disease. Trends Biotechnol 29(1):26\u201332. https:\/\/doi.org\/10.1016\/j.tibtech.2010.09.007","journal-title":"Trends Biotechnol"},{"issue":"5","key":"210_CR13","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1212\/WNL.0000000000002923","volume":"87","author":"CR Jack","year":"2016","unstructured":"Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS et al (2016) A\/t\/n: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5):539\u2013547. https:\/\/doi.org\/10.1212\/WNL.0000000000002923","journal-title":"Neurology"},{"issue":"7","key":"210_CR14","doi-asserted-by":"publisher","first-page":"2295","DOI":"10.1093\/brain\/awaa165","volume":"143","author":"KA Cousins","year":"2020","unstructured":"Cousins KA, Irwin DJ, Wolk DA, Lee EB, Shaw LM, Trojanowski JQ, Da Re F, Gibbons GS, Grossman M, Phillips JS (2020) Atn status in amnestic and non-amnestic Alzheimer\u2019s disease and frontotemporal lobar degeneration. Brain 143(7):2295\u20132311. https:\/\/doi.org\/10.1093\/brain\/awaa165","journal-title":"Brain"},{"key":"210_CR15","doi-asserted-by":"publisher","first-page":"1549","DOI":"10.2147\/NDT.S67477","volume":"11","author":"PG Janicak","year":"2015","unstructured":"Janicak PG, Dokucu ME (2015) Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr Dis Treat 11:1549. https:\/\/doi.org\/10.2147\/NDT.S67477","journal-title":"Neuropsychiatr Dis Treat"},{"issue":"11","key":"210_CR16","doi-asserted-by":"publisher","first-page":"2125","DOI":"10.1016\/j.clinph.2017.08.007","volume":"128","author":"M Hallett","year":"2017","unstructured":"Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y (2017) Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 128(11):2125\u20132139. https:\/\/doi.org\/10.1016\/j.clinph.2017.08.007","journal-title":"Clin Neurophysiol"},{"key":"210_CR17","doi-asserted-by":"publisher","DOI":"10.1155\/2018\/5174815","author":"R Cassani","year":"2018","unstructured":"Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH (2018) Systematic review on resting-state EEG for Alzheimer\u2019s disease diagnosis and progression assessment. Dis Mark. https:\/\/doi.org\/10.1155\/2018\/5174815","journal-title":"Dis Mark"},{"key":"210_CR18","doi-asserted-by":"publisher","first-page":"496","DOI":"10.3389\/fneur.2020.00496","volume":"11","author":"RS Turner","year":"2020","unstructured":"Turner RS, Stubbs T, Davies DA, Albensi BC (2020) Potential new approaches for diagnosis of Alzheimer\u2019s disease and related dementias. Front Neurol 11:496. https:\/\/doi.org\/10.3389\/fneur.2020.00496","journal-title":"Front Neurol"},{"issue":"5","key":"210_CR19","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/s11517-012-0890-z","volume":"50","author":"ZA Dastgheib","year":"2012","unstructured":"Dastgheib ZA, Lithgow B, Moussavi Z (2012) Diagnosis of Parkinson\u2019s disease using electrovestibulography. Med Biological Eng Comput 50(5):483\u2013491. https:\/\/doi.org\/10.1007\/s11517-012-0890-z","journal-title":"Med Biological Eng Comput"},{"issue":"3","key":"210_CR20","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1016\/j.jalz.2011.03.005","volume":"7","author":"GM McKhann","year":"2011","unstructured":"McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R et al (2011) The diagnosis of dementia due to Alzheimer\u2019s disease: recommendations from the National Institute on Aging-Alzheimer\u2019s Association workgroups on diagnostic guidelines for Alzheimer\u2019s disease. Alzheimer\u2019s Dement 7(3):263\u2013269. https:\/\/doi.org\/10.1016\/j.jalz.2011.03.005","journal-title":"Alzheimer\u2019s Dement"},{"issue":"12","key":"210_CR21","doi-asserted-by":"publisher","first-page":"1484","DOI":"10.1001\/jamaneurol.2015.2875","volume":"72","author":"J Gooblar","year":"2015","unstructured":"Gooblar J, Roe CM, Selsor NJ, Gabel MJ, Morris JC (2015) Attitudes of research participants and the general public regarding disclosure of Alzheimer disease research results. JAMA Neurol 72(12):1484\u20131490. https:\/\/doi.org\/10.1001\/jamaneurol.2015.2875","journal-title":"JAMA Neurol"},{"issue":"46","key":"210_CR22","doi-asserted-by":"publisher","first-page":"18008","DOI":"10.1523\/JNEUROSCI.1402-13.2013","volume":"33","author":"LL Beason-Held","year":"2013","unstructured":"Beason-Held LL, Goh JO, An Y, Kraut MA, O\u2019Brien RJ, Ferrucci L, Resnick SM (2013) Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33(46):18008\u201318014. https:\/\/doi.org\/10.1523\/JNEUROSCI.1402-13.2013","journal-title":"J Neurosci"},{"issue":"7","key":"210_CR23","doi-asserted-by":"publisher","first-page":"4135","DOI":"10.1073\/pnas.082107399","volume":"99","author":"AD Smith","year":"2002","unstructured":"Smith AD (2002) Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci 99(7):4135\u20134137. https:\/\/doi.org\/10.1073\/pnas.082107399","journal-title":"Proc Natl Acad Sci"},{"issue":"9","key":"210_CR24","doi-asserted-by":"publisher","first-page":"1235","DOI":"10.1136\/jnnp.2003.032714","volume":"75","author":"M Symms","year":"2004","unstructured":"Symms M, J\u00e4ger H, Schmierer K, Yousry T (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75(9):1235\u20131244. https:\/\/doi.org\/10.1136\/jnnp.2003.032714","journal-title":"J Neurol Neurosurg Psychiatry"},{"issue":"1","key":"210_CR25","doi-asserted-by":"publisher","first-page":"11258","DOI":"10.1038\/s41598-018-29295-9","volume":"8","author":"C Ledig","year":"2018","unstructured":"Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D (2018) Structural brain imaging in Alzheimer\u2019s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep 8(1):11258\u201311284. https:\/\/doi.org\/10.1038\/s41598-018-29295-9","journal-title":"Sci Rep"},{"issue":"2","key":"210_CR26","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1186\/s40708-018-0080-3","volume":"5","author":"J Islam","year":"2018","unstructured":"Islam J, Zhang Y (2018) Brain MRI analysis for Alzheimer\u2019s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform 5(2):2. https:\/\/doi.org\/10.1186\/s40708-018-0080-3","journal-title":"Brain Inform"},{"issue":"11","key":"210_CR27","doi-asserted-by":"publisher","first-page":"3243","DOI":"10.3390\/s20113243","volume":"20","author":"N Yamanakkanavar","year":"2020","unstructured":"Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer\u2019s disease: a survey. Sensors 20(11):3243. https:\/\/doi.org\/10.3390\/s20113243","journal-title":"Sensors"},{"key":"210_CR28","unstructured":"ADNI, Alzheimer\u2019s disease neuroimaging initiative: ADNI. http:\/\/adni.loni.usc.edu\/data-samples\/access-data. Accessed 13 July 2020"},{"key":"210_CR29","unstructured":"OASIS Brains, Open access series of imaging studies. https:\/\/www.oasis-brains.org Accessed 13 July 2020"},{"key":"210_CR30","unstructured":"Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learn"},{"key":"210_CR31","doi-asserted-by":"publisher","unstructured":"Hemanth DJ, Anitha J (2012) Image pre-processing and feature extraction techniques for magnetic resonance brain image analysis. In: International conference on future generation communication and networking. Springer, pp 349\u2013356. https:\/\/doi.org\/10.1007\/978-3-642-35594-3_47","DOI":"10.1007\/978-3-642-35594-3_47"},{"key":"210_CR32","doi-asserted-by":"publisher","first-page":"974","DOI":"10.1016\/j.trci.2019.10.001","volume":"5","author":"S Basheera","year":"2019","unstructured":"Basheera S, Ram MSS (2019) Convolution neural network-based Alzheimer\u2019s disease classification using hybrid enhanced independent component analysis based segmented gray matter of t2 weighted magnetic resonance imaging with clinical valuation. Alzheimer\u2019s & Dement Transl Res Clin Interven 5:974\u2013986. https:\/\/doi.org\/10.1016\/j.trci.2019.10.001","journal-title":"Alzheimer\u2019s & Dement Transl Res Clin Interven"},{"key":"210_CR33","doi-asserted-by":"publisher","unstructured":"Fischmeister FPS, H\u00f6llinger I, Klinger N, Geissler A, Wurnig M, Matt E, Rath J, Robinson S, Trattnig S, Beisteiner R (2013) The benefits of skull stripping in the normalization of clinical fmri data. NeuroImage Clin 3:369\u2013380. https:\/\/doi.org\/10.1016\/j.nicl.2013.09.007","DOI":"10.1016\/j.nicl.2013.09.007"},{"key":"210_CR34","doi-asserted-by":"crossref","unstructured":"Swiebocka-Wiek J (2016) Skull stripping for MRI images using morphological operators. In: IFIP international conference on computer information systems and industrial management. Springer, pp 172\u2013182","DOI":"10.1007\/978-3-319-45378-1_16"},{"key":"210_CR35","unstructured":"Guyon I, Gunn S, Nikravesh M, Zadeh LA (2008) Feature extraction: foundations and applications, vol 207. Springer"},{"issue":"1","key":"210_CR36","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.neucom.2011.03.050","volume":"75","author":"F Segovia","year":"2012","unstructured":"Segovia F, G\u00f3rriz J, Ram\u00edrez J, Salas-Gonzalez D, \u00c1lvarez I, L\u00f3pez M, Chaves R, Initiative ADN et al (2012) A comparative study of feature extraction methods for the diagnosis of Alzheimer\u2019s disease using the ADNI database. Neurocomputing 75(1):64\u201371. https:\/\/doi.org\/10.1016\/j.neucom.2011.03.050","journal-title":"Neurocomputing"},{"key":"210_CR37","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1016\/j.neucom.2017.11.077","volume":"300","author":"J Cai","year":"2018","unstructured":"Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70\u201379. https:\/\/doi.org\/10.1016\/j.neucom.2017.11.077","journal-title":"Neurocomputing"},{"issue":"19","key":"210_CR38","doi-asserted-by":"publisher","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","volume":"23","author":"Y Saeys","year":"2007","unstructured":"Saeys Y, Inza I, Larra\u00f1aga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507\u20132517. https:\/\/doi.org\/10.1093\/bioinformatics\/btm344","journal-title":"Bioinformatics"},{"key":"210_CR39","doi-asserted-by":"publisher","unstructured":"Wani N, Raza K (2018) Multiple kernel-learning approach for medical image analysis. In: Soft computing based medical image analysis. Elsevier, pp 31\u201347. https:\/\/doi.org\/10.1016\/B978-0-12-813087-2.00002-6","DOI":"10.1016\/B978-0-12-813087-2.00002-6"},{"key":"210_CR40","doi-asserted-by":"publisher","DOI":"10.1155\/2017\/1952373","author":"Z Xiao","year":"2017","unstructured":"Xiao Z, Ding Y, Lan T, Zhang C, Luo C, Qin Z (2017) Brain MR image classification for Alzheimer\u2019s disease diagnosis based on multifeature fusion. Comput Math Methods Med. https:\/\/doi.org\/10.1155\/2017\/1952373","journal-title":"Comput Math Methods Med"},{"key":"210_CR41","unstructured":"Kumar SS, Nandhini M (2016) A comprehensive survey: early detection of Alzheimer\u2019s disease using different techniques and approaches, IJCET"},{"issue":"1","key":"210_CR42","doi-asserted-by":"publisher","first-page":"27","DOI":"10.5121\/ijcsa.2015.5103","volume":"5","author":"S Mareeswari","year":"2015","unstructured":"Mareeswari S, Jiji GW (2015) A survey: early detection of Alzheimer\u2019s disease using different techniques. Int J Comput Sci Appl 5(1):27\u201337. https:\/\/doi.org\/10.5121\/ijcsa.2015.5103","journal-title":"Int J Comput Sci Appl"},{"issue":"5","key":"210_CR43","first-page":"22780181","volume":"7","author":"M Lohar","year":"2018","unstructured":"Lohar M, Patange R (2018) A survey on classification methods of brain MRI for Alzheimer\u2019s disease. Int J Eng Res Technol 7(5):22780181","journal-title":"Int J Eng Res Technol"},{"issue":"1","key":"210_CR44","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/s40708-015-0027-x","volume":"3","author":"C Zheng","year":"2016","unstructured":"Zheng C, Xia Y, Pan Y, Chen J (2016) Automated identification of dementia using medical imaging: a survey from a pattern classification perspective. Brain Inform 3(1):17\u201327. https:\/\/doi.org\/10.1007\/s40708-015-0027-x","journal-title":"Brain Inform"},{"key":"210_CR45","doi-asserted-by":"publisher","DOI":"10.26483\/ijarcs.v9i2.5353","author":"A Sherin","year":"2018","unstructured":"Sherin A, Rajeswari R (2018) A comparative survey of feature extraction and classification techniques for early diagnosis of Alzhimer\u2019s disease. Int J Adv Res Comput Sci. https:\/\/doi.org\/10.26483\/ijarcs.v9i2.5353","journal-title":"Int J Adv Res Comput Sci"},{"key":"210_CR46","doi-asserted-by":"publisher","unstructured":"Cusano C, Ciocca G, Schettini R (2003) Image annotation using SVM. In: Internet imaging V, vol 5304. International Society for Optics and Photonics, pp 330\u2013338. https:\/\/doi.org\/10.1117\/12.526746","DOI":"10.1117\/12.526746"},{"key":"210_CR47","doi-asserted-by":"crossref","unstructured":"Karamizadeh S, Abdullah SM, Halimi M, Shayan J, Javad Rajabi M (2014) Advantage and drawback of support vector machine functionality, in, (2014) International conference on computer, communications, and control technology (I4CT). IEEE, pp 63\u201365","DOI":"10.1109\/I4CT.2014.6914146"},{"key":"210_CR48","doi-asserted-by":"publisher","unstructured":"Kraetzer C, Dittmann J (2007) Pros and cons of mel-cepstrum based audio steganalysis using SVM classification. In: International workshop on information hiding. Springer, pp 359\u2013377. https:\/\/doi.org\/10.1007\/978-3-540-77370-2_24","DOI":"10.1007\/978-3-540-77370-2_24"},{"key":"210_CR49","doi-asserted-by":"publisher","DOI":"10.1155\/2017\/8750506","author":"S Alam","year":"2017","unstructured":"Alam S, Kwon G-R, Kim J-I, Park C-S (2017) Twin SVM-based classification of Alzheimer\u2019s disease using complex dual-tree wavelet principal coefficients and lda. J Healthc Eng. https:\/\/doi.org\/10.1155\/2017\/8750506","journal-title":"J Healthc Eng"},{"key":"210_CR50","doi-asserted-by":"publisher","unstructured":"Jongkreangkrai C, Vichianin Y, Tocharoenchai C, Arimura H, Initiative ADN, et\u00a0al (2016) Computer-aided classification of Alzheimer\u2019s disease based on support vector machine with combination of cerebral image features in MRI. In: Journal of physics: conference series, vol 694. IOP Publishing, p 012036. https:\/\/doi.org\/10.1088\/1742-6596\/694\/1\/012036","DOI":"10.1088\/1742-6596\/694\/1\/012036"},{"issue":"2","key":"210_CR51","doi-asserted-by":"publisher","first-page":"515","DOI":"10.3233\/JAD-190704","volume":"72","author":"H Elshatoury","year":"2019","unstructured":"Elshatoury H, Avots E, Anbarjafari G, Initiative ADN et al (2019) Volumetric histogram-based Alzheimer\u2019s disease detection using support vector machine. J Alzheimer\u2019s Dis 72(2):515\u2013524. https:\/\/doi.org\/10.3233\/JAD-190704","journal-title":"J Alzheimer\u2019s Dis"},{"key":"210_CR52","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.artmed.2019.05.003","volume":"97","author":"L Nanni","year":"2019","unstructured":"Nanni L, Brahnam S, Salvatore C, Castiglioni I, Initiative ADN et al (2019) Texture descriptors and voxels for the early diagnosis of Alzheimer\u2019s disease. Artif Intell Med 97:19\u201326. https:\/\/doi.org\/10.1016\/j.artmed.2019.05.003","journal-title":"Artif Intell Med"},{"issue":"6","key":"210_CR53","doi-asserted-by":"publisher","first-page":"1607","DOI":"10.1109\/JBHI.2017.2704614","volume":"21","author":"J Zhang","year":"2017","unstructured":"Zhang J, Liu M, An L, Gao Y, Shen D (2017) Alzheimer\u2019s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J Biomed Health Inform 21(6):1607\u20131616. https:\/\/doi.org\/10.1109\/JBHI.2017.2704614","journal-title":"IEEE J Biomed Health Inform"},{"key":"210_CR54","doi-asserted-by":"publisher","first-page":"101903","DOI":"10.1016\/j.bspc.2020.101903","volume":"59","author":"B Richhariya","year":"2020","unstructured":"Richhariya B, Tanveer M, Rashid A, Initiative ADN et al (2020) Diagnosis of Alzheimer\u2019s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed Signal Process Control 59:101903. https:\/\/doi.org\/10.1016\/j.bspc.2020.101903","journal-title":"Biomed Signal Process Control"},{"issue":"5","key":"210_CR55","first-page":"272","volume":"9","author":"J Ali","year":"2012","unstructured":"Ali J, Khan R, Ahmad N, Maqsood I (2012) Random forests and decision trees. Int J Comput Sci Issues 9(5):272","journal-title":"Int J Comput Sci Issues"},{"issue":"1","key":"210_CR56","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1186\/1471-2105-9-319","volume":"9","author":"A Statnikov","year":"2008","unstructured":"Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform 9(1):319. https:\/\/doi.org\/10.1186\/1471-2105-9-319","journal-title":"BMC Bioinform"},{"key":"210_CR57","doi-asserted-by":"publisher","unstructured":"Naghibi SA, Ahmadi K, Daneshi A (2017) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manag 31(9):2761\u20132775. https:\/\/doi.org\/10.1007\/s11269-017-1660-3","DOI":"10.1007\/s11269-017-1660-3"},{"key":"210_CR58","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.neuroimage.2012.09.065","volume":"65","author":"KR Gray","year":"2013","unstructured":"Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D, Initiative ADN et al (2013) Random forest-based similarity measures for multi-modal classification of Alzheimer\u2019s disease. NeuroImage 65:167\u2013175. https:\/\/doi.org\/10.1016\/j.neuroimage.2012.09.065","journal-title":"NeuroImage"},{"key":"210_CR59","doi-asserted-by":"publisher","unstructured":"Lebedev A, Westman E, Van\u00a0Westen G, Kramberger M, Lundervold A, Aarsland D, Soininen H, K\u0142oszewska I, Mecocci P, Tsolaki M et\u00a0al (2014) Random forest ensembles for detection and prediction of Alzheimer\u2019s disease with a good between-cohort robustness. NeuroImage Clin 6:115\u2013125. https:\/\/doi.org\/10.1016\/j.nicl.2014.08.023","DOI":"10.1016\/j.nicl.2014.08.023"},{"key":"210_CR60","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/572567","author":"K Oppedal","year":"2015","unstructured":"Oppedal K, Eftest\u00f8l T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imaging. https:\/\/doi.org\/10.1155\/2015\/572567","journal-title":"Int J Biomed Imaging"},{"issue":"1","key":"210_CR61","doi-asserted-by":"publisher","first-page":"269","DOI":"10.3233\/JAD-160594","volume":"55","author":"BA Ardekani","year":"2017","unstructured":"Ardekani BA, Bermudez E, Mubeen AM, Bachman AH (2017) Prediction of incipient Alzheimer\u2019s disease dementia in patients with mild cognitive impairment. J Alzheimer\u2019s Dis 55(1):269\u2013281. https:\/\/doi.org\/10.3233\/JAD-160594","journal-title":"J Alzheimer\u2019s Dis"},{"issue":"6","key":"210_CR62","doi-asserted-by":"publisher","first-page":"2361","DOI":"10.1088\/1361-6560\/aa5dbe","volume":"62","author":"T Maggipinto","year":"2017","unstructured":"Maggipinto T, Bellotti R, Amoroso N, Diacono D, Donvito G, Lella E, Monaco A, Scelsi MA, Tangaro S, Initiative ADN et al (2017) Dti measurements for Alzheimer\u2019s classification. Phys Med Biol 62(6):2361. https:\/\/doi.org\/10.1088\/1361-6560\/aa5dbe","journal-title":"Phys Med Biol"},{"issue":"1","key":"210_CR63","doi-asserted-by":"publisher","first-page":"69","DOI":"10.30773\/pi.2020.0304","volume":"18","author":"J Kim","year":"2021","unstructured":"Kim J, Lee M, Lee MK, Wang S-M, Kim N-Y, Kang DW, Um YH, Na H-R, Woo YS, Lee CU et al (2021) Development of random forest algorithm based prediction model of Alzheimer\u2019s disease using neurodegeneration pattern. Psychiatry Investig 18(1):69. https:\/\/doi.org\/10.30773\/pi.2020.0304","journal-title":"Psychiatry Investig"},{"key":"210_CR64","doi-asserted-by":"publisher","unstructured":"Mahmon NA, Ya\u2019acob N (2014) A review on classification of satellite image using artificial neural network (ANN). In: IEEE 5th control and system graduate research colloquium. IEEE, pp 153\u2013157. https:\/\/doi.org\/10.1109\/ICSGRC.2014.6908713","DOI":"10.1109\/ICSGRC.2014.6908713"},{"issue":"1","key":"210_CR65","first-page":"66","volume":"13","author":"C Dumitru","year":"2013","unstructured":"Dumitru C, Maria V (2013) Advantages and disadvantages of using neural networks for predictions. Ovidius Univ Ann Ser Econ Sci 13(1):66","journal-title":"Ovidius Univ Ann Ser Econ Sci"},{"issue":"2","key":"210_CR66","first-page":"66","volume":"4","author":"JK Basu","year":"2010","unstructured":"Basu JK, Bhattacharyya D, Kim T-H (2010) Use of artificial neural network in pattern recognition. Int J Softw Eng Its Appl 4(2):66","journal-title":"Int J Softw Eng Its Appl"},{"key":"210_CR67","doi-asserted-by":"publisher","first-page":"101645","DOI":"10.1016\/j.nicl.2018.101645","volume":"21","author":"S Basaia","year":"2019","unstructured":"Basaia S, Agosta F, Wagner L, Canu E, Magnani G, Santangelo R, Filippi M, Initiative ADN et al (2019) Automated classification of Alzheimer\u2019s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21:101645. https:\/\/doi.org\/10.1016\/j.nicl.2018.101645","journal-title":"NeuroImage Clin"},{"key":"210_CR68","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.cogsys.2018.12.015","volume":"57","author":"R Jain","year":"2019","unstructured":"Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) Convolutional neural network based Alzheimer\u2019s disease classification from magnetic resonance brain images. Cognit Syst Res 57:147\u2013159. https:\/\/doi.org\/10.1016\/j.cogsys.2018.12.015","journal-title":"Cognit Syst Res"},{"issue":"1","key":"210_CR69","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-018-22871-z","volume":"8","author":"D Lu","year":"2018","unstructured":"Lu D, Popuri K, Ding GW, Balachandar R, Beg MF (2018) Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer\u2019s disease using structural MR and FDG-pet images. Sci Rep 8(1):1\u201313. https:\/\/doi.org\/10.1038\/s41598-018-22871-z","journal-title":"Sci Rep"},{"key":"210_CR70","doi-asserted-by":"publisher","first-page":"35","DOI":"10.3389\/fninf.2018.00035","volume":"12","author":"M Liu","year":"2018","unstructured":"Liu M, Cheng D, Yan W (2018) Alzheimer\u2019s disease neuroimaging i, classification of Alzheimer\u2019s disease by combination of convolutional and recurrent neural networks using FDGPET images. Front Neuroinform 12:35. https:\/\/doi.org\/10.3389\/fninf.2018.00035","journal-title":"Front Neuroinform"},{"issue":"3\u20134","key":"210_CR71","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1007\/s12021-018-9370-4","volume":"16","author":"M Liu","year":"2018","unstructured":"Liu M, Cheng D, Wang K, Wang Y, Initiative ADN et al (2018) Multi-modality cascaded convolutional neural networks for Alzheimer\u2019s disease diagnosis. Neuroinformatics 16(3\u20134):295\u2013308. https:\/\/doi.org\/10.1007\/s12021-018-9370-4","journal-title":"Neuroinformatics"},{"key":"210_CR72","first-page":"21","volume":"1","author":"D Guru","year":"2010","unstructured":"Guru D, Sharath Y, Manjunath S (2010) Texture features and KNN in classification of flower images. IJCA Spec Issue RTIPPR 1:21\u201329","journal-title":"IJCA Spec Issue RTIPPR"},{"key":"210_CR73","doi-asserted-by":"publisher","unstructured":"Liao Y, Vemuri VR (2002) Use of k-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439\u2013448. https:\/\/doi.org\/10.1016\/S0167-4048(02)00514-X","DOI":"10.1016\/S0167-4048(02)00514-X"},{"issue":"5","key":"210_CR74","first-page":"605","volume":"3","author":"SB Imandoust","year":"2013","unstructured":"Imandoust SB, Bolandraftar M (2013) Application of k-nearest neighbor (KNN) approach for predicting economic events: theoretical background. Int J Eng Res Appl 3(5):605\u2013610","journal-title":"Int J Eng Res Appl"},{"key":"210_CR75","doi-asserted-by":"publisher","unstructured":"Sharma K, Kaur A, Gujral S (2014) A review on various brain tumor detection techniques in brain MRI images. IOSR J Eng 4(05):06\u201312. https:\/\/doi.org\/10.9790\/3021-04530612","DOI":"10.9790\/3021-04530612"},{"issue":"9","key":"210_CR76","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s10916-019-1428-9","volume":"43","author":"UR Acharya","year":"2019","unstructured":"Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, Rajinikanth V, Yeong CH (2019) Automated detection of Alzheimer\u2019s disease using brain MRI images-a study with various feature extraction techniques. J Med Syst 43(9):302. https:\/\/doi.org\/10.1007\/s10916-019-1428-9","journal-title":"J Med Syst"},{"issue":"3","key":"210_CR77","doi-asserted-by":"publisher","first-page":"56","DOI":"10.21917\/ijivp.2017.0234","volume":"8","author":"RS Kamathe","year":"2018","unstructured":"Kamathe RS, Joshi KR (2018) A robust optimized feature set based automatic classification of Alzheimer\u2019s disease from brain MR images using k-NN and adaboost. ICTACT J Image Video Process 8(3):56. https:\/\/doi.org\/10.21917\/ijivp.2017.0234","journal-title":"ICTACT J Image Video Process"},{"key":"210_CR78","doi-asserted-by":"publisher","first-page":"1731","DOI":"10.5281\/zenodo.1084608","volume":"2012","author":"AB Tufail","year":"2012","unstructured":"Tufail AB, Abidi A, Siddiqui AM, Younis MS (2012) Automatic classification of initial categories of Alzheimer\u2019s disease from structural MRI phase images: a comparison of PSVM, KNN and ANN methods. Age 2012:1731. https:\/\/doi.org\/10.5281\/zenodo.1084608","journal-title":"Age"},{"key":"210_CR79","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.imu.2018.12.003","volume":"14","author":"K Kruthika","year":"2019","unstructured":"Kruthika K, Maheshappa H, Initiative ADN et al (2019) Multistage classifier-based approach for Alzheimer\u2019s disease prediction and retrieval. Inform Med Unlocked 14:34\u201342. https:\/\/doi.org\/10.1016\/j.imu.2018.12.003","journal-title":"Inform Med Unlocked"},{"issue":"11","key":"210_CR80","doi-asserted-by":"publisher","first-page":"10","DOI":"10.14569\/IJACSA.2017.081102","volume":"8","author":"AM Taqi","year":"2017","unstructured":"Taqi AM, Al-Azzo F, Milanova M (2017) Classification of Alzheimer disease based on normalized hu moment invariants and multiclassifier. Int J Adv Comput Sci Appl 8(11):10\u201318. https:\/\/doi.org\/10.14569\/IJACSA.2017.081102","journal-title":"Int J Adv Comput Sci Appl"},{"issue":"7","key":"210_CR81","doi-asserted-by":"publisher","first-page":"e0132945","DOI":"10.1371\/journal.pone.0132945","volume":"10","author":"N Lin","year":"2015","unstructured":"Lin N, Jiang J, Guo S, Xiong M (2015) Functional principal component analysis and randomized sparse clustering algorithm for medical image analysis. PLoS ONE 10(7):e0132945. https:\/\/doi.org\/10.1371\/journal.pone.0132945","journal-title":"PLoS ONE"},{"issue":"6","key":"210_CR82","doi-asserted-by":"publisher","first-page":"2500","DOI":"10.1002\/hbm.24017","volume":"39","author":"MF Schmidt","year":"2018","unstructured":"Schmidt MF, Storrs JM, Freeman KB, Jack CR Jr, Turner ST, Griswold ME, Mosley TH Jr (2018) A comparison of manual tracing and freesurfer for estimating hippocampal volume over the adult lifespan. Hum Brain Mapp 39(6):2500\u20132513. https:\/\/doi.org\/10.1002\/hbm.24017","journal-title":"Hum Brain Mapp"},{"issue":"9","key":"210_CR83","doi-asserted-by":"publisher","first-page":"5","DOI":"10.5121\/sipij.2013.4502","volume":"3","author":"P Garg","year":"2017","unstructured":"Garg P, Jain T (2017) A comparative study on histogram equalization and cumulative histogram equalization. Int J New Technol Res 3(9):5\u20136. https:\/\/doi.org\/10.5121\/sipij.2013.4502","journal-title":"Int J New Technol Res"},{"issue":"2","key":"210_CR84","doi-asserted-by":"publisher","first-page":"656","DOI":"10.1016\/j.ejor.2017.02.037","volume":"261","author":"S Maldonado","year":"2017","unstructured":"Maldonado S, P\u00e9rez J, Bravo C (2017) Cost-based feature selection for support vector machines: an application in credit scoring. Eur J Oper Res 261(2):656\u2013665. https:\/\/doi.org\/10.1016\/j.ejor.2017.02.037","journal-title":"Eur J Oper Res"},{"key":"210_CR85","doi-asserted-by":"crossref","unstructured":"Rohr K (2001) Landmark-based image analysis: using geometric and intensity models, vol 21. Springer","DOI":"10.1007\/978-94-015-9787-6"},{"issue":"22","key":"210_CR86","doi-asserted-by":"publisher","first-page":"4314","DOI":"10.1016\/j.ins.2008.07.015","volume":"178","author":"H Zhou","year":"2008","unstructured":"Zhou H, Wang R, Wang C (2008) A novel extended local-binary-pattern operator for texture analysis. Inf Sci 178(22):4314\u20134325. https:\/\/doi.org\/10.1016\/j.ins.2008.07.015","journal-title":"Inf Sci"},{"key":"210_CR87","doi-asserted-by":"publisher","unstructured":"Ahad NA, Yahaya SSS (2014) Sensitivity analysis of Welch\u2019st-test. In: AIP Conference proceedings, vol 1605. American Institute of Physics, pp 888\u2013893. https:\/\/doi.org\/10.1063\/1.4887707","DOI":"10.1063\/1.4887707"},{"key":"210_CR88","unstructured":"Pham TA (2010) Optimization of texture feature extraction algorithm"},{"key":"210_CR89","unstructured":"Gadkari D (2004) Image quality analysis using GLCM"},{"key":"210_CR90","doi-asserted-by":"publisher","DOI":"10.1155\/2014\/434972","author":"M Li","year":"2014","unstructured":"Li M, Du W, Nian F (2014) An adaptive particle swarm optimization algorithm based on directed weighted complex network. Math Probl Eng. https:\/\/doi.org\/10.1155\/2014\/434972","journal-title":"Math Probl Eng"}],"updated-by":[{"updated":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T00:00:00Z","timestamp":1637020800000},"DOI":"10.1007\/s13735-021-00222-5","type":"correction","label":"Correction"}],"container-title":["International Journal of Multimedia Information Retrieval"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13735-021-00210-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13735-021-00210-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13735-021-00210-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,30]],"date-time":"2021-11-30T17:48:42Z","timestamp":1638294522000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13735-021-00210-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,19]]},"references-count":90,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["210"],"URL":"https:\/\/doi.org\/10.1007\/s13735-021-00210-9","relation":{},"ISSN":["2192-6611","2192-662X"],"issn-type":[{"value":"2192-6611","type":"print"},{"value":"2192-662X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,5,19]]},"assertion":[{"value":"3 March 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 April 2021","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 April 2021","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 May 2021","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 November 2021","order":5,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":6,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":7,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s13735-021-00222-5","URL":"https:\/\/doi.org\/10.1007\/s13735-021-00222-5","order":8,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}},{"value":"Not applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"Not applicable.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Code availability"}}]}}