{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T12:40:03Z","timestamp":1728045603629},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2024,9,17]],"date-time":"2024-09-17T00:00:00Z","timestamp":1726531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,9,17]],"date-time":"2024-09-17T00:00:00Z","timestamp":1726531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Syst Assur Eng Manag"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1007\/s13198-024-02508-3","type":"journal-article","created":{"date-parts":[[2024,9,18]],"date-time":"2024-09-18T12:53:40Z","timestamp":1726664020000},"page":"4982-4999","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Vision-based gait analysis to detect Parkinson\u2019s disease using hybrid Harris hawks and Arithmetic optimization algorithm with Random Forest classifier"],"prefix":"10.1007","volume":"15","author":[{"given":"Sankara Rao","family":"Palla","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6071-764X","authenticated-orcid":false,"given":"Priyadarsan","family":"Parida","sequence":"additional","affiliation":[]},{"given":"Gupteswar","family":"Sahu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,17]]},"reference":[{"key":"2508_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cma.2020.113609","author":"L Abualigah","year":"2021","unstructured":"Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The Arithmetic Optimization Algorithm. Comput Method Appl Mechanics Eng. https:\/\/doi.org\/10.1016\/j.cma.2020.113609","journal-title":"Comput Method Appl Mechanics Eng"},{"key":"2508_CR2","doi-asserted-by":"publisher","first-page":"1333","DOI":"10.1038\/s41598-024-51600-y","volume":"14","author":"L Ali","year":"2024","unstructured":"Ali L, Javeed A, Noor A, Rauf HT, Kadry S, Gandomi AH (2024) Parkinson\u2019s disease detection based on features refinement through L1 regularized SVM and deep neural network. Sci Rep 14:1333. https:\/\/doi.org\/10.1038\/s41598-024-51600-y","journal-title":"Sci Rep"},{"key":"2508_CR3","doi-asserted-by":"publisher","DOI":"10.1201\/9780429504044-8","author":"A Almomani","year":"2019","unstructured":"Almomani A, Alweshah M, Al Khalayleh S, Al-Refai M, Qashi R (2019) Metaheuristic algorithms-based feature selection approach for intrusion detection. Mach Learn Comput Cyber Security. https:\/\/doi.org\/10.1201\/9780429504044-8","journal-title":"Mach Learn Comput Cyber Security"},{"issue":"3","key":"2508_CR4","doi-asserted-by":"publisher","first-page":"760","DOI":"10.1016\/j.bbe.2018.06.002","volume":"38","author":"T A\u015furo\u011flu","year":"2018","unstructured":"A\u015furo\u011flu T, A\u00e7\u0131c\u0131 K, Erda\u015f \u00c7B, Toprak MK, Erdem H, O\u011ful H (2018) Parkinson\u2019s disease monitoring from gait analysis via foot-worn sensors. Biocybernetics Biomed Eng 38(3):760\u2013772. https:\/\/doi.org\/10.1016\/j.bbe.2018.06.002","journal-title":"Biocybernetics Biomed Eng"},{"key":"2508_CR5","doi-asserted-by":"publisher","first-page":"19254","DOI":"10.1109\/ACCESS.2022.3151119","volume":"10","author":"\u0130 \u00c7et\u0131nba\u015e","year":"2022","unstructured":"\u00c7et\u0131nba\u015e \u0130, Tamy\u00fcrek B, Dem\u0131rta\u015f M (2022) The hybrid Harris hawks optimizer-arithmetic optimization algorithm: a new hybrid algorithm for sizing optimization and design of microgrids. IEEE Access 10:19254\u201319283. https:\/\/doi.org\/10.1109\/ACCESS.2022.3151119","journal-title":"IEEE Access"},{"key":"2508_CR6","doi-asserted-by":"publisher","DOI":"10.1109\/AIC57670.2023.10263842","author":"A Chaudhuri","year":"2023","unstructured":"Chaudhuri A, Mohdiwale S (2023) An effective feature selection technique for detecting Parkinson\u2019s disease using binary whale optimization algorithm. IEEE World Conf Applied Intelligence Comput. https:\/\/doi.org\/10.1109\/AIC57670.2023.10263842","journal-title":"IEEE World Conf Applied Intelligence Comput"},{"key":"2508_CR7","doi-asserted-by":"publisher","first-page":"966","DOI":"10.1007\/s44174-023-00079-8","volume":"1","author":"V Chaurasia","year":"2023","unstructured":"Chaurasia V, Chaurasia A (2023) Detection of Parkinson\u2019s disease by using machine learning stacking and ensemble method. Biomed Mater Devices 1:966\u2013978. https:\/\/doi.org\/10.1007\/s44174-023-00079-8","journal-title":"Biomed Mater Devices"},{"issue":"5","key":"2508_CR8","doi-asserted-by":"publisher","first-page":"991","DOI":"10.53106\/160792642021092205005","volume":"22","author":"F Chen","year":"2021","unstructured":"Chen F, Fan X, Li J, Zou M, Huang L (2021) Gait Analysis Based Parkinsons Disease Auxiliary Diagnosis System. J Internet Technol 22(5):991\u2013999. https:\/\/doi.org\/10.53106\/160792642021092205005","journal-title":"J Internet Technol"},{"key":"2508_CR9","doi-asserted-by":"publisher","unstructured":"Chen, X., Yao, X., Tang, C., Sun, Y., Wang, X., & Wu, X. (2018). Detecting Parkinson\u2019s Disease Using Gait Analysis with Particle Swarm Optimization. In: Zhou, J., Salvendy, G. (eds) Human Aspects of IT for the Aged Population. Applications in Health, Assistance, and Entertainment. ITAP. Lecture Notes in Computer Science, 10927. Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-319-92037-5-20","DOI":"10.1007\/978-3-319-92037-5-20"},{"key":"2508_CR10","doi-asserted-by":"publisher","first-page":"186638","DOI":"10.1109\/ACCESS.2020.3029728","volume":"8","author":"ZM Elgamal","year":"2020","unstructured":"Elgamal ZM, Yasin NBM, Tubishat M, Alswaitti M, Mirjalili S (2020) An improved harris hawk\u2019s optimization algorithm with simulated annealing for feature selection in the medical field. IEEE Access 8:186638\u2013186652. https:\/\/doi.org\/10.1109\/ACCESS.2020.3029728","journal-title":"IEEE Access"},{"key":"2508_CR11","doi-asserted-by":"publisher","first-page":"412","DOI":"10.1016\/j.compeleceng.2018.04.014","volume":"68","author":"D Gupta","year":"2018","unstructured":"Gupta D, Sundaram S, Khanna A, Hassanien AE, De Albuquerque VHC (2018) Improved diagnosis of Parkinson\u2019s disease using optimized crow search algorithm. Comput Electr Eng 68:412\u2013424. https:\/\/doi.org\/10.1016\/j.compeleceng.2018.04.014","journal-title":"Comput Electr Eng"},{"key":"2508_CR12","doi-asserted-by":"publisher","first-page":"45367","DOI":"10.1007\/s11042-023-15462-2","volume":"82","author":"V Gupta","year":"2023","unstructured":"Gupta V, Kanungo A, Kumar P, Kumar N, Choubey C (2023a) A design of bat-based optimized deep learning model for EEG signal analysis. Multimed Tools Appl 82:45367\u201345387. https:\/\/doi.org\/10.1007\/s11042-023-15462-2","journal-title":"Multimed Tools Appl"},{"key":"2508_CR13","doi-asserted-by":"publisher","DOI":"10.1080\/03772063.2023.2220698","author":"V Gupta","year":"2023","unstructured":"Gupta V, Mittal M, Mittal V, Diwania S, Singh R, Gupta V (2023b) A firefly based deep belief signal specification based novel hybrid technique for EEG signal analysis. IETE J Res. https:\/\/doi.org\/10.1080\/03772063.2023.2220698","journal-title":"IETE J Res"},{"key":"2508_CR14","doi-asserted-by":"publisher","first-page":"849","DOI":"10.1016\/j.future.2019.02.028","volume":"97","author":"AA Heidari","year":"2019","unstructured":"Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawk\u2019s optimization: algorithm and applications. Futur Gener Comput Syst 97:849\u2013872. https:\/\/doi.org\/10.1016\/j.future.2019.02.028","journal-title":"Futur Gener Comput Syst"},{"key":"2508_CR15","first-page":"173","volume":"2","author":"AM Ibrahim","year":"2024","unstructured":"Ibrahim AM, Mohammed MA (2024) A comprehensive review on advancements in artificial intelligence approaches and future perspectives for early diagnosis of parkinson\u2019s disease. Int J Math Statistics Compute Sci 2:173\u2013182","journal-title":"Int J Math Statistics Compute Sci"},{"issue":"7","key":"2508_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0236258","volume":"15","author":"M Juutinen","year":"2020","unstructured":"Juutinen M, Wang C, Zhu J, Haladjian J, Ruokolainen J, Puustinen J, Vehkaoja A (2020) Parkinson\u2019s disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study. PLoS ONE 15(7):1\u201319. https:\/\/doi.org\/10.1371\/journal.pone.0236258","journal-title":"PLoS ONE"},{"key":"2508_CR17","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-33-6710-4_3","author":"S Kaul","year":"2021","unstructured":"Kaul S, Kumar Y (2021) Nature-inspired metaheuristic algorithms for constraint handling: challenges, issues, and research perspective. Const Handling Metaheuristic Appl. https:\/\/doi.org\/10.1007\/978-981-33-6710-4_3","journal-title":"Const Handling Metaheuristic Appl"},{"issue":"3","key":"2508_CR18","doi-asserted-by":"publisher","first-page":"1863","DOI":"10.1007\/s11831-022-09853-1","volume":"30","author":"S Kaur","year":"2022","unstructured":"Kaur S, Kumar Y, Koul A, Kamboj SK (2022) A systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challenges. Archives Comput Method Eng 30(3):1863\u20131895. https:\/\/doi.org\/10.1007\/s11831-022-09853-1","journal-title":"Archives Comput Method Eng"},{"key":"2508_CR19","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1016\/j.patrec.2020.09.011","volume":"140","author":"N Kleanthous","year":"2020","unstructured":"Kleanthous N, Hussain AJ, Khan W, Liatsis P (2020) A new machine learning-based approach to predict Freezing of Gait. Pattern Recogn Lett 140:119\u2013126. https:\/\/doi.org\/10.1016\/j.patrec.2020.09.011","journal-title":"Pattern Recogn Lett"},{"key":"2508_CR20","doi-asserted-by":"publisher","first-page":"156620","DOI":"10.1109\/ACCESS.2019.2949744","volume":"7","author":"N Kour","year":"2019","unstructured":"Kour N, Arora S (2019) Computer-vision based diagnosis of parkinson\u2019s disease via Gait: a survey. IEEE Access 7:156620\u2013215664. https:\/\/doi.org\/10.1109\/ACCESS.2019.2949744","journal-title":"IEEE Access"},{"issue":"10","key":"2508_CR21","doi-asserted-by":"publisher","first-page":"2404","DOI":"10.3390\/diagnostics12102404","volume":"12","author":"A Li","year":"2022","unstructured":"Li A, Li C (2022) Detecting Parkinson\u2019s disease through gait measures using machine learning. Diagnostics 12(10):2404. https:\/\/doi.org\/10.3390\/diagnostics12102404","journal-title":"Diagnostics"},{"key":"2508_CR22","doi-asserted-by":"publisher","first-page":"1919","DOI":"10.3390\/electronics9111919","volume":"9","author":"B Li","year":"2020","unstructured":"Li B, Yao Z, Wang J, Wang S, Yang X, Sun Y (2020) Improved deep learning technique to detect freezing of gait in parkinson\u2019s disease based on wearable sensors. Electronics 9:1919. https:\/\/doi.org\/10.3390\/electronics9111919","journal-title":"Electronics"},{"key":"2508_CR23","doi-asserted-by":"publisher","unstructured":"Mittra, Y., & Rustagi, V. (2018). Classification of Subjects with Parkinson\u2019s Disease Using Gait Data Analysis, In Proceedings of the International Conference on Automation and Computational Engineering, https:\/\/doi.org\/10.1109\/ICACE.2018.8687022.","DOI":"10.1109\/ICACE.2018.8687022"},{"key":"2508_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12984-020-00756-5","volume":"17","author":"S Moon","year":"2020","unstructured":"Moon S, Song HJ, Sharma VD, Lyons KE, Pahwa R, Akinwuntan AE, Devos H (2020) Classification of Parkinson\u2019s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach. J Neuro Eng Rehabilit 17:1\u20138. https:\/\/doi.org\/10.1186\/s12984-020-00756-5","journal-title":"J Neuro Eng Rehabilit"},{"key":"2508_CR25","doi-asserted-by":"publisher","first-page":"1553","DOI":"10.1007\/s11517-018-1795-2","volume":"56","author":"J Ortells","year":"2018","unstructured":"Ortells J, Herrero-Ezquerro MT, Mollineda RA (2018) Vision-based gait impairment analysis for aided diagnosis. Med Bio Eng Comput 56:1553\u20131564. https:\/\/doi.org\/10.1007\/s11517-018-1795-2","journal-title":"Med Bio Eng Comput"},{"issue":"5","key":"2508_CR26","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1080\/21681163.2021.2012829","volume":"10","author":"SR Palla","year":"2021","unstructured":"Palla SR, Sahu G, Parida P (2021) Human gait recognition using firefly template segmentation. Comput Methods Biomech Biomed Eng: Imaging Visualization 10(5):565\u2013575. https:\/\/doi.org\/10.1080\/21681163.2021.2012829","journal-title":"Comput Methods Biomech Biomed Eng: Imaging Visualization"},{"key":"2508_CR27","doi-asserted-by":"publisher","first-page":"1395","DOI":"10.3390\/diagnostics11081395","volume":"11","author":"SJ Priya","year":"2021","unstructured":"Priya SJ, Rani AJ, Subathra MSP, Mohammed MA, Dama\u0161evi\u010dius R, Ubendran N (2021) Local pattern transformation based feature extraction for recognition of Parkinson\u2019s disease based on gait signals. Diagnostics 11:1395. https:\/\/doi.org\/10.3390\/diagnostics11081395","journal-title":"Diagnostics"},{"key":"2508_CR28","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2023.104721","author":"PS Rao","year":"2023","unstructured":"Rao PS, Parida P, Sahu G, Dash S (2023) A multi-view human gait recognition using hybrid whale and gray wolf optimization algorithm with a random forest classifier. Image Vision Comput. https:\/\/doi.org\/10.1016\/j.imavis.2023.104721","journal-title":"Image Vision Comput"},{"issue":"1","key":"2508_CR29","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1049\/iet-bmt.2018.5063","volume":"8","author":"I Rida","year":"2019","unstructured":"Rida I, Almaadeed N, Almaadeed S (2019) Robust gait recognition: a comprehensive Survey. IET Biometrics 8(1):14\u201328. https:\/\/doi.org\/10.1049\/iet-bmt.2018.5063","journal-title":"IET Biometrics"},{"key":"2508_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s42452-020-2826-9","volume":"2","author":"S Sehgal","year":"2020","unstructured":"Sehgal S, Agarwal M, Gupta D, Sundaram S, Bashambu A (2020) Optimized grasshopper algorithm for diagnosis of Parkinson\u2019s disease. SN Appl Sci 2:1\u201318. https:\/\/doi.org\/10.1007\/s42452-020-2826-9","journal-title":"SN Appl Sci"},{"key":"2508_CR31","doi-asserted-by":"publisher","DOI":"10.1109\/ICCIAutom.2016.7483152","author":"MK Shahsavari","year":"2016","unstructured":"Shahsavari MK, Rashidi H, Bakhsh HR (2016) Efficient classification of Parkinson\u2019s disease using extreme learning machine and hybrid particle swarm optimization. Int Conf Control, Instrument, Automation. https:\/\/doi.org\/10.1109\/ICCIAutom.2016.7483152","journal-title":"Int Conf Control, Instrument, Automation"},{"key":"2508_CR32","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1016\/j.cogsys.2018.12.002","volume":"54","author":"P Sharma","year":"2019","unstructured":"Sharma P, Sundaram S, Sharma M, Sharma A, Gupta D (2019) Diagnosis of Parkinson\u2019s disease using modified grey wolf optimization. Cogn Syst Res 54:100\u2013115. https:\/\/doi.org\/10.1016\/j.cogsys.2018.12.002","journal-title":"Cogn Syst Res"},{"issue":"10","key":"2508_CR33","doi-asserted-by":"publisher","first-page":"3700","DOI":"10.3390\/s22103700","volume":"22","author":"D Trabassi","year":"2022","unstructured":"Trabassi D, Serrao M, Varrecchia T, Ranavolo A, Coppola G, De Icco R, Tassorelli C, Castiglia SF (2022) Machine learning approach to support the detection of Parkinson\u2019s disease in IMU-based gait analysis. Sensors 22(10):3700. https:\/\/doi.org\/10.3390\/s22103700","journal-title":"Sensors"},{"issue":"2","key":"2508_CR34","doi-asserted-by":"publisher","first-page":"e0244396","DOI":"10.1371\/journal.pone.0244396","volume":"16","author":"T Varrecchia","year":"2021","unstructured":"Varrecchia T, Castiglia SF, Ranavolo A, Conte C, Tatarelli A, Coppola G, Di Lorenzo C, Draicchio F, Pierelli F, Serrao M (2021) An artificial neural network approach to detect presence and severity of Parkinson\u2019s disease via gait parameters. PLoS ONE 16(2):e0244396. https:\/\/doi.org\/10.1371\/journal.pone.0244396","journal-title":"PLoS ONE"},{"issue":"9","key":"2508_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/s18092743","volume":"18","author":"TT Verlekar","year":"2018","unstructured":"Verlekar TT, Soares LD, Correia PL (2018) Automatic classification of gait impairments using a markerless 2D video-based system. Sensors 18(9):1\u201316. https:\/\/doi.org\/10.3390\/s18092743","journal-title":"Sensors"},{"key":"2508_CR36","doi-asserted-by":"publisher","first-page":"400","DOI":"10.1016\/j.bspc.2017.06.015","volume":"38","author":"Y Wang","year":"2017","unstructured":"Wang Y, Wang AN, Ai Q, Sun HJ (2017) An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson\u2019s disease. Biomed Signal Process Control 38:400\u2013410. https:\/\/doi.org\/10.1016\/j.bspc.2017.06.015","journal-title":"Biomed Signal Process Control"},{"key":"2508_CR37","doi-asserted-by":"publisher","first-page":"11395","DOI":"10.1007\/s00500-023-08274-x","volume":"27","author":"M Xu","year":"2023","unstructured":"Xu M, Song Q, Xi M, Zhou Z (2023) Binary arithmetic optimization algorithm for feature selection. Soft Comput 27:11395\u201311429. https:\/\/doi.org\/10.1007\/s00500-023-08274-x","journal-title":"Soft Comput"}],"container-title":["International Journal of System Assurance Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13198-024-02508-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13198-024-02508-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13198-024-02508-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T12:13:45Z","timestamp":1728044025000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13198-024-02508-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,17]]},"references-count":37,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2024,10]]}},"alternative-id":["2508"],"URL":"https:\/\/doi.org\/10.1007\/s13198-024-02508-3","relation":{},"ISSN":["0975-6809","0976-4348"],"issn-type":[{"type":"print","value":"0975-6809"},{"type":"electronic","value":"0976-4348"}],"subject":[],"published":{"date-parts":[[2024,9,17]]},"assertion":[{"value":"19 August 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 August 2024","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 September 2024","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 September 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"All authors have no conflicts of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}