{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:00:17Z","timestamp":1732039217486},"reference-count":78,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2020,5,12]],"date-time":"2020-05-12T00:00:00Z","timestamp":1589241600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,5,12]],"date-time":"2020-05-12T00:00:00Z","timestamp":1589241600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Syst Assur Eng Manag"],"published-print":{"date-parts":[[2020,6]]},"DOI":"10.1007\/s13198-020-00972-1","type":"journal-article","created":{"date-parts":[[2020,5,12]],"date-time":"2020-05-12T16:25:07Z","timestamp":1589300707000},"page":"547-560","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":115,"title":["Systematic review of deep learning techniques in plant disease detection"],"prefix":"10.1007","volume":"11","author":[{"given":"M.","family":"Nagaraju","sequence":"first","affiliation":[]},{"given":"Priyanka","family":"Chawla","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,12]]},"reference":[{"key":"972_CR2","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1094\/PDIS-12-16-1699-RE","volume":"101","author":"P Ahmadi","year":"2017","unstructured":"Ahmadi P, Muharram FM, Ahmad K, Mansor SIA (2017) Early detection of ganoderma basal stem rot of oil palms using artificial neural networks spectral analysis. Plant Dis 101:1009\u20131016","journal-title":"Plant Dis"},{"issue":"12","key":"972_CR3","first-page":"1336","volume":"11","author":"JA Alzubi","year":"2015","unstructured":"Alzubi JA (2015) Diversity based improved bagging algorithm. Proc Int Conference Eng MIS (ICEMIS\u201915) 11(12):1336\u20131343","journal-title":"Proc Int Conference Eng MIS (ICEMIS\u201915)"},{"key":"972_CR4","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.19026\/rjaset.11.2241","volume":"12","author":"JA Alzubi","year":"2015","unstructured":"Alzubi JA (2015) Optimal classifier ensemble design based on cooperative game theory. Res J Appl Sci Eng Technol 12:1336\u20131343","journal-title":"Res J Appl Sci Eng Technol"},{"issue":"1","key":"972_CR5","first-page":"76","volume":"15","author":"O Alzubi","year":"2018","unstructured":"Alzubi O, Alzubi J, Tedmori S, Rashaideh H, Almomani O (2018) Consensus-based combining method for classifier ensembles. Int Arab J Inform Technol 15(1):76\u201387","journal-title":"Int Arab J Inform Technol"},{"key":"972_CR6","unstructured":"Amara J, Bouazizi B, Algergawy A (2017) A deep learning-based approach for banana leaf diseases classification. In Lecture notes in informatics (LNI), pp 79\u201388"},{"key":"972_CR7","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.compag.2017.03.004","volume":"136","author":"X Bai","year":"2017","unstructured":"Bai X, Li X, Zetian Fu, Lv X, Zhang L (2017) A fuzzy clustering segmentation method based on neighbourhood grayscale information for defining cucumber leaf spot disease images. Computers Electron Agric 136:157\u2013165","journal-title":"Computers Electron Agric"},{"key":"972_CR8","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.biosystemseng.2016.01.017","volume":"144","author":"JGA Barbedo","year":"2017","unstructured":"Barbedo JGA (2017) A review of the main challenges in automatic plant disease identification based on visible range images. Biosyst Eng 144:52\u201360","journal-title":"Biosyst Eng"},{"key":"972_CR9","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.biosystemseng.2015.01.003","volume":"I3I","author":"JGA Barbedo","year":"2015","unstructured":"Barbedo JGA, Tibola CS, Fernandes JMC (2015) Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosys Eng I3I:65\u201376","journal-title":"Biosys Eng"},{"key":"972_CR10","doi-asserted-by":"crossref","unstructured":"Bargoti S, Underwood J (2016) Deep fruit detection in orchards. arXiv preprint arXiv:1610.03677","DOI":"10.1109\/ICRA.2017.7989417"},{"key":"972_CR11","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.procs.2015.08.022","volume":"58","author":"M Bhange","year":"2015","unstructured":"Bhange M, Hingoliwala HA (2015) Smart farming: pomegranate disease detection using image processing. Proc Comput Sci 58:280\u2013288","journal-title":"Proc Comput Sci"},{"issue":"4","key":"972_CR12","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1080\/08839514.2017.1315516","volume":"31","author":"M Brahimi","year":"2017","unstructured":"Brahimi M, Boukhalfa K, Moussaoui A (2017) Deep learning for tomato diseases: classification and symptoms visualization. Appl Artific Intell 31(4):299\u2013315","journal-title":"Appl Artific Intell"},{"issue":"2","key":"972_CR14","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1109\/LRA.2017.2651944","volume":"2","author":"SW Chen","year":"2017","unstructured":"Chen SW, Shiva Kumar SS, D\u2019Cunha S, Das J, Okun E, Qu C, Kumar V (2017) Counting apples and oranges with deep learning: a data-driven approach. IEEE Rob Autom Lett 2(2):781\u2013788","journal-title":"IEEE Rob Autom Lett"},{"key":"972_CR15","doi-asserted-by":"crossref","first-page":"1741","DOI":"10.3389\/fpls.2017.01741","volume":"8","author":"A Cruz","year":"2017","unstructured":"Cruz A, Luvisi A, Bellis LD, Ampatzidis Y (2017) X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front Plant Sci 8:1741","journal-title":"Front Plant Sci"},{"issue":"11","key":"972_CR17","doi-asserted-by":"crossref","first-page":"1426","DOI":"10.1094\/PHYTO-11-16-0417-R","volume":"107","author":"C DeChant","year":"2017","unstructured":"DeChant C, Wiesner-Hanks T, Chen S, Stewart EL, Yosinski J, Gore MA (2017) Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 107(11):1426\u20131432","journal-title":"Phytopathology"},{"key":"972_CR18","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.compag.2017.05.019","volume":"140","author":"U-O Dorj","year":"2017","unstructured":"Dorj U-O, Lee M, Yun S-S (2017) A yield estimation in citrus orchards via fruit detection and counting using image processing. Computers Electron Agric 140:103\u2013112","journal-title":"Computers Electron Agric"},{"key":"972_CR19","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.compag.2017.10.027","volume":"143","author":"Ferreira A dos Santos","year":"2017","unstructured":"dos Santos Ferreira A, Freitas DM, da Silvaa GG, Pistorib H, Folhes MT (2017) Weed detection in soybean crops using ConvNets. Computers Electron Agricul 143:314\u2013324","journal-title":"Computers Electron Agricul"},{"key":"972_CR83","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.compag.2018.01.009","volume":"145","author":"KP Ferentinos","year":"2018","unstructured":"Ferentinos KP (2018) Deep learning models for plant disease. Comput Electron Agric 145:311\u2013318","journal-title":"Comput Electron Agric"},{"key":"972_CR21","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.3390\/s17092022","volume":"17","author":"A Fuentes","year":"2018","unstructured":"Fuentes A, Yoon S, Kim SC, Park DS (2018) A robust deep-learning-based detector for real-time tomato plant diseases and pest's recognition. Sensors 17:2022","journal-title":"Sensors"},{"issue":"1","key":"972_CR22","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/MGRS.2016.2616418","volume":"5","author":"P Ghamisi","year":"2017","unstructured":"Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ (2017) Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci Remote Sens Mag 5(1):8\u201332","journal-title":"IEEE Geosci Remote Sens Mag"},{"key":"972_CR55","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2016.12.008","volume":"235","author":"MM Ghazi","year":"2017","unstructured":"Ghazi MM, Yanikoglu B, Aptoula E (2017) Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235:1\u20138","journal-title":"Neurocomputing"},{"issue":"9","key":"972_CR23","doi-asserted-by":"crossref","first-page":"1560","DOI":"10.1109\/JPROC.2015.2449668","volume":"103","author":"L G\u00f3mez-Chova","year":"2015","unstructured":"G\u00f3mez-Chova L, Tuia D, Moser G, Camps-Valls G (2015) Multimodal classification of remote sensing images: a review and future directions. Proc IEEE 103(9):1560\u20131584","journal-title":"Proc IEEE"},{"key":"972_CR24","doi-asserted-by":"crossref","unstructured":"Golhani K, Balasundram SK, Vadamalai G, Pradhan BA (2018) A review of neural networks in plant disease detection using hyperspectral data. Informat Proc Agric 354\u2013371","DOI":"10.1016\/j.inpa.2018.05.002"},{"key":"972_CR25","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","volume":"127","author":"GL Grinblat","year":"2016","unstructured":"Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Computers Electron Agric 127:418\u2013424","journal-title":"Computers Electron Agric"},{"key":"972_CR26","first-page":"1","volume":"2017","author":"W Guan","year":"2017","unstructured":"Guan W, Sun Yu, Wang Jianxin (2017) Automatic image-based plant disease severity estimation using deep learning. Computat Intell Neurosci 2017:1\u20138","journal-title":"Computat Intell Neurosci"},{"key":"972_CR27","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.compag.2016.11.021","volume":"133","author":"E Hamuda","year":"2017","unstructured":"Hamuda E, Ginley BM, Glavin M, Jones E (2017) Automatic crop detection under field conditions using the HSV color space and morphological operations. Computers Electron Agric 133:97\u2013107","journal-title":"Computers Electron Agric"},{"key":"972_CR28","first-page":"1","volume-title":"Cloud implementation of the K-means algorithm for hyperspectral image analysis","author":"JM Haut","year":"2016","unstructured":"Haut JM, Paoletti M, Plaza J, Plaza A (2016) Cloud implementation of the K-means algorithm for hyperspectral image analysis. Springer Science Business Media, New York, pp 1\u201316"},{"issue":"1","key":"972_CR29","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1007\/s11227-016-1896-3","volume":"73","author":"JM Haut","year":"2017","unstructured":"Haut JM, Paoletti M, Plaza J, Plaza A (2017) Cloud implementation of the K-means algorithm for hyperspectral image analysis. J Supercomput 73(1):514\u2013529","journal-title":"J Supercomput"},{"key":"972_CR30","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceeding of the IEEE international conference on computer vision (ICCV), pp 1026\u20131034","DOI":"10.1109\/ICCV.2015.123"},{"key":"972_CR75","first-page":"1","volume":"2015","author":"W Hu","year":"2015","unstructured":"Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. Hindawi Publishing Corporat J Sensors 2015:1\u201312","journal-title":"Hindawi Publishing Corporat J Sensors"},{"key":"972_CR31","doi-asserted-by":"crossref","unstructured":"Ienco D, Gaetano R, Dupaquier C, Maurel P (2017) Land cover classification via multi-temporal spatial data by recurrent neural networks. arXiv preprint arXiv:1704.04055","DOI":"10.1109\/LGRS.2017.2728698"},{"key":"972_CR32","unstructured":"Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift, vol 1. Wiley, pp 1\u201311"},{"issue":"8","key":"972_CR33","doi-asserted-by":"crossref","first-page":"1233","DOI":"10.1016\/0031-3203(95)00160-3","volume":"29","author":"AK Jain","year":"1996","unstructured":"Jain AK, Vailaya A (1996) Image retrieval using color and shape. Pattern Recogn 29(8):1233\u20131244","journal-title":"Pattern Recogn"},{"issue":"1","key":"972_CR34","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/34.824819","volume":"22","author":"AK Jain","year":"2000","unstructured":"Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4\u201334","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"972_CR36","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.compag.2017.04.013","volume":"138","author":"A Johannes","year":"2017","unstructured":"Johannes A, Picon A, Alvarez-Gila A, Echazarra J, Rodriguez-Vaamonde S, Navajas AD, Ortiz-Barredo A (2017) Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers Electron Agric 138:200\u2013209","journal-title":"Computers Electron Agric"},{"key":"972_CR37","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.compag.2018.02.016","volume":"147","author":"A Kamilaris","year":"2018","unstructured":"Kamilaris A, Prenafeta-Bold\u00fa FX (2018) Deep learning in agriculture: A survey. Comput Electron Agric 147:70\u201390","journal-title":"Comput Electron Agric"},{"key":"972_CR38","doi-asserted-by":"crossref","unstructured":"Kamilaris A, Gao F, Prenafeta-Bold\u00fa FX, Ali MI (2016) Agri-IoT: a semantic framework for internet of things-enabled smart farming applications. In: 3rd world forum on the internet of things (WF-IoT) IEEE. Reston, pp 442\u2013447","DOI":"10.1109\/WF-IoT.2016.7845467"},{"key":"972_CR39","first-page":"39","volume-title":"Estimating the environmental impact of agriculture by means of geospatial and big data analysis: the case of Catalonia. From Science to Society","author":"A Kamilaris","year":"2017","unstructured":"Kamilaris A, Assumpcio A, Blasi AB, Torrellas M, Prenafeta-Bold\u00fa FX (2017) Estimating the environmental impact of agriculture by means of geospatial and big data analysis: the case of Catalonia. From Science to Society. Springer, Luxembourg, pp 39\u201348"},{"key":"972_CR40","first-page":"638","volume-title":"Basic study of automated diagnosis of viral plant diseases using convolutional neural networks","author":"Y Kawasaki","year":"2015","unstructured":"Kawasaki Y, Uga H, Kagiwada S, Iyatomi H (2015) Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. Springer International Publishing, Switzerland, pp 638\u2013645"},{"issue":"11","key":"972_CR41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JSEN.2018.2828616","volume":"18","author":"S Kim","year":"2018","unstructured":"Kim S, Lee M, Shin C (2018) IoT-based strawberry disease prediction system for smart farming. Sensors 18(11):1\u201317","journal-title":"Sensors"},{"issue":"1","key":"972_CR42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/s18010248","volume":"18","author":"W Kong","year":"2018","unstructured":"Kong W, Zhang C, Huang W, Liu F, He Y (2018) Application of hyperspectral imaging to detect sclerotinia sclerotium on oilseed rape stems. Sensors 18(1):1\u201316","journal-title":"Sensors"},{"key":"972_CR43","doi-asserted-by":"crossref","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2018) ImageNet Classification with deep convolutional neural networks. ACM 60. No. 6. Available: https:\/\/code.google.com\/p\/cuda-convnet\/","DOI":"10.1145\/3065386"},{"issue":"1","key":"972_CR44","first-page":"10","volume":"10","author":"B Liu","year":"2018","unstructured":"Liu B, Zhang Y, He D, Li Y (2018) Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 10(1):10\u201311","journal-title":"Symmetry"},{"issue":"1","key":"972_CR45","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1186\/s13007-017-0233-z","volume":"13","author":"A Lowe","year":"2017","unstructured":"Lowe A, Harrison N, French AP (2017) Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13(1):80","journal-title":"Plant Methods"},{"key":"972_CR46","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1016\/j.neucom.2017.06.023","volume":"267","author":"Y Lu","year":"2017","unstructured":"Lu Y, Yi S, Zeng N, Liu Y, Zhang Y (2017a) Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267:378\u2013384","journal-title":"Neurocomputing"},{"key":"972_CR35","first-page":"1","volume-title":"An in-field automatic wheat disease diagnosis system","author":"Lu Jiang","year":"2017","unstructured":"Lu J, Hu J, Zhao G, Mei F, Zhang C (2017b) An in-field automatic wheat disease diagnosis system. Elsevier, New York, pp 1\u201315"},{"issue":"4","key":"972_CR47","doi-asserted-by":"crossref","first-page":"1891","DOI":"10.1109\/TII.2017.2650204","volume":"13","author":"Z Lv","year":"2017","unstructured":"Lv Z, Song H, Basanta-Val P, Steed A, Jo M (2017) Next-generation big data analytics: state of the art, challenges, and future research topics. IEEE Trans Industr Inf 13(4):1891\u20131899","journal-title":"IEEE Trans Industr Inf"},{"key":"972_CR48","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.compag.2014.12.007","volume":"111","author":"J Ma","year":"2015","unstructured":"Ma J, Li X, Wen H (2015) \"A keyframe extraction method for processing greenhouse vegetables production monitoring video. Comput Electron Agric 111:92\u2013102","journal-title":"Comput Electron Agric"},{"issue":"3","key":"972_CR49","first-page":"282","volume":"46","author":"J Ma","year":"2015","unstructured":"Ma J, Li X, Zhang L (2015) Monitoring video capture system for identification of greenhouse vegetable diseases. Trans Chin Soc Agric Mach 46(3):282\u2013287","journal-title":"Trans Chin Soc Agric Mach"},{"key":"972_CR50","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.compag.2017.08.023","volume":"142","author":"J Ma","year":"2017","unstructured":"Ma J, Keming Du, Zhang L, Zheng F, Chu J, Sun Z (2017a) A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing. Computers Electron Agric 142:110\u2013117","journal-title":"Computers Electron Agric"},{"issue":"2","key":"972_CR51","first-page":"195","volume":"48","author":"J Ma","year":"2017","unstructured":"Ma J, Wen H, Zhang L (2017b) Downy mildew diagnosis system for greenhouse cucumbers based on image processing. Trans Chin Soc Agric Mach 48(2):195\u2013202","journal-title":"Trans Chin Soc Agric Mach"},{"key":"972_CR52","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.compag.2018.08.048","volume":"154","author":"J Ma","year":"2018","unstructured":"Ma J, Du K, Zheng F, Zhang L, Gong Z, Sun Z (2018) A recognition method for cucumber diseases using leaf symptom images based on a deep convolutional neural network. Computers Electron Agric 154:18\u201324","journal-title":"Computers Electron Agric"},{"key":"972_CR53","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.3389\/fpls.2016.01419","volume":"7","author":"SP Mohanty","year":"2016","unstructured":"Mohanty SP, Hughes DT, Salathe M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419","journal-title":"Front Plant Sci"},{"key":"972_CR54","doi-asserted-by":"crossref","unstructured":"Mokhtar U, Ali MA, Hassanien AE, Hefny H (2015) Identifying two of tomatoes leaf viruses using support vector machine. In: Mandal JK, Satapathy SC, Sanyal MK, Sarkar PP, Mukhopadhyay A (eds) In: Information systems design and intelligent applications. Springer, pp 771\u2013782","DOI":"10.1007\/978-81-322-2250-7_77"},{"issue":"2","key":"972_CR56","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1017\/S2040470017001376","volume":"8","author":"D Oppenheim","year":"2017","unstructured":"Oppenheim D, Shani G (2017) Potato disease classification using convolution neural networks. Adv Animal Biosci 8(2):244\u2013249","journal-title":"Adv Animal Biosci"},{"key":"972_CR57","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.isprsjprs.2017.11.021","volume":"145","author":"ME Paoletti","year":"2017","unstructured":"Paoletti ME, Haut JM, Plaza J, Plaza A (2017) A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J Photogram Remote Sens 145:120\u2013147","journal-title":"ISPRS J Photogram Remote Sens"},{"key":"972_CR58","doi-asserted-by":"crossref","first-page":"836","DOI":"10.1016\/j.procs.2017.03.177","volume":"107","author":"X Peifeng","year":"2017","unstructured":"Peifeng X, Ganshan W, Yijia W, Chen X, Yang H, Zhang R (2017) Automatic wheat leaf rust detection and grading diagnosis via embedded image processing system. Procedia Computer Sci 107:836\u2013841","journal-title":"Procedia Computer Sci"},{"key":"972_CR59","first-page":"1","volume":"138","author":"A Picon","year":"2018","unstructured":"Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A (2018) Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers Electron Agric 138:1\u201311","journal-title":"Computers Electron Agric"},{"issue":"2","key":"972_CR60","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1109\/JSTARS.2016.2603120","volume":"10","author":"VAA Quirita","year":"2017","unstructured":"Quirita VAA, da Costa GAOP, Happ PN, Feitosa RQ, d.S. Ferreira RQ, Oliveira DAB, (2017) A new cloud computing architecture for the classification of remote sensing data. IEEE J Sel Topics Appl Earth Observ Remote Sens 10(2):409\u2013416","journal-title":"IEEE J Sel Topics Appl Earth Observ Remote Sens"},{"key":"972_CR62","unstructured":"Rebetez J (2016) Augmenting a convolutional neural network with local histograms\u2014a case study in crop classification from high-resolution UAV imagery. In: European symposium on artificial neural networks, computational intelligence, and machine learning. Bruges, Belgium, pp 27\u201329"},{"issue":"6","key":"972_CR63","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2017","unstructured":"Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137\u20131149","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"972_CR64","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/6584725","volume":"2016","author":"E Ribeiro","year":"2016","unstructured":"Ribeiro E, Uhl A, Wimmer G, H\u00e4fner M, (2016) Exploring deep learning and transfer learning for colonic polyp classification. Comput Math Methods Med 2016:1\u201316","journal-title":"Comput Math Methods Med"},{"key":"972_CR65","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.neunet.2014.08.005","volume":"64","author":"TN Sainath","year":"2016","unstructured":"Sainath TN, Kingsbury B, Saon G et al (2015) Deep Convolutional neural networks for large-scale speech tasks. Neural Networks 64:39\u201348","journal-title":"Neural Networks"},{"issue":"8","key":"972_CR66","doi-asserted-by":"crossref","first-page":"1222","DOI":"10.3390\/s16081222","volume":"16","author":"I Sa","year":"2016","unstructured":"Sa I, Ge Z, Dayoub F, Upcroft B, Perez T, McCool C (2016) Deep fruits: a fruit detection system using deep neural networks. Sensors 16(8):1222","journal-title":"Sensors"},{"issue":"4","key":"972_CR67","doi-asserted-by":"crossref","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","volume":"39","author":"E Shelhamer","year":"2017","unstructured":"Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640\u2013651","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"972_CR68","first-page":"119","volume":"1","author":"M Sibiya","year":"2019","unstructured":"Sibiya M, Sumbwanyambe M (2019) A computational procedure for the recognition and classification of maize leaf disease out of health leaves using convolutional neural networks. Agric Eng 1:119\u2013131","journal-title":"Agric Eng"},{"key":"972_CR69","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/3289801","volume":"2016","author":"S Sladojevic","year":"2016","unstructured":"Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D (2016) Deep neural networks-based recognition of plant diseases by leaf image classification. Comput Intell Neurosci 2016:1\u201311","journal-title":"Comput Intell Neurosci"},{"issue":"1","key":"972_CR70","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1121\/1.5118245","volume":"146","author":"A Thakur","year":"2019","unstructured":"Thakur A, Thapar D, Rajan P, Nigam A (2019) Deep metric learning for bioacoustic classification: overcoming training data scarcity using dynamic triplet loss. J Acoust Soc Am 146(1):534\u2013547","journal-title":"J Acoust Soc Am"},{"issue":"1","key":"972_CR71","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/83.892448","volume":"10","author":"A Vailaya","year":"2001","unstructured":"Vailaya A, Figueiredo MAT, Jain AK, Zhang H-J (2001) Image classification for content-based indexing. IEEE Trans Image Process 10(1):117\u2013131","journal-title":"IEEE Trans Image Process"},{"key":"972_CR72","unstructured":"Plant Village Disease Classification Challenge. https:\/\/www.crowdai.org\/challenges\/plantvillagedisease-classification-challenge\/dataset_files. Accessed June 2018"},{"key":"972_CR73","first-page":"56","volume":"43","author":"ZM Wang","year":"2016","unstructured":"Wang ZM, Cao HJ, Fan L (2016) Method on human activity recognition based on convolutional neural networks. Computer Sci 43:56\u201358","journal-title":"Computer Sci"},{"key":"972_CR74","first-page":"1","volume":"2017","author":"G Wang","year":"2017","unstructured":"Wang G, Sun Y, Wang J (2017) Automatic image-based plant disease severity estimation using deep learning. Comput Intell Neurosci 2017:1\u20138","journal-title":"Comput Intell Neurosci"},{"key":"972_CR76","first-page":"1","volume":"440","author":"T Wiesner-Hanks","year":"2018","unstructured":"Wiesner-Hanks T, Stewart EL, Kaczmar N, Dechant C, Wu H, Nelson R, Lipson H, Gore MA (2018) Image set for deep learning: field images of maize a noted with disease symptoms. BMC Res Notes 440:1\u20133","journal-title":"BMC Res Notes"},{"issue":"10","key":"972_CR77","doi-asserted-by":"crossref","first-page":"2357","DOI":"10.1109\/TNNLS.2014.2382123","volume":"26","author":"J Wu","year":"2015","unstructured":"Wu J, Yang H (2015) Linear regression-based efficient SVM learning for large-scale classification. IEEE Trans Neural Networks Learn Syst 26(10):2357\u20132369","journal-title":"IEEE Trans Neural Networks Learn Syst"},{"key":"972_CR78","first-page":"1","volume":"11","author":"Y Xu","year":"2017","unstructured":"Xu Y, Yu G, Wang Y, Wu X, Ma Y (2017) Car detection from low-altitude UAV imagery with the Faster R-CNN. J Adv Transport 11:1\u201311","journal-title":"J Adv Transport"},{"issue":"4","key":"972_CR79","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1177352.1177355","volume":"38","author":"A Yilmaz","year":"2006","unstructured":"Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1\u201345","journal-title":"ACM Comput Surv"},{"key":"972_CR80","first-page":"1","volume":"53","author":"S Zhang","year":"2018","unstructured":"Zhang S, Huang W, Zhang C (2018a) Three-channel convolutional neural networks for vegetable leaf disease recognition. Cognitive Syst Res 53:1\u201311","journal-title":"Cognitive Syst Res"},{"key":"972_CR81","doi-asserted-by":"crossref","first-page":"30370","DOI":"10.1109\/ACCESS.2018.2844405","volume":"6","author":"X Zhang","year":"2018","unstructured":"Zhang X, Qiao Y, Meng F, Fan C, Zhang M (2018b) Identification of maize leaf disease using improved deep convolutional neural networks. IEEE Access 6:30370\u201330377","journal-title":"IEEE Access"},{"key":"972_CR82","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/8356294","volume":"2016","author":"L Zhao","year":"2016","unstructured":"Zhao L, Jia K (2016) Multiscale CNN\u2019s for Brain Tumor Segmentation and Diagnosis. Comput Math Methods Med 2016:1\u20138","journal-title":"Comput Math Methods Med"}],"container-title":["International Journal of System Assurance Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13198-020-00972-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13198-020-00972-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13198-020-00972-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,12]],"date-time":"2021-05-12T00:15:43Z","timestamp":1620778543000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13198-020-00972-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5,12]]},"references-count":78,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2020,6]]}},"alternative-id":["972"],"URL":"https:\/\/doi.org\/10.1007\/s13198-020-00972-1","relation":{},"ISSN":["0975-6809","0976-4348"],"issn-type":[{"value":"0975-6809","type":"print"},{"value":"0976-4348","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,5,12]]},"assertion":[{"value":"4 September 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 January 2020","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 May 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}