{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:36:37Z","timestamp":1732041397991},"reference-count":67,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2022,4,11]],"date-time":"2022-04-11T00:00:00Z","timestamp":1649635200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,4,11]],"date-time":"2022-04-11T00:00:00Z","timestamp":1649635200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Mach. Learn. & Cyber."],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1007\/s13042-022-01537-3","type":"journal-article","created":{"date-parts":[[2022,4,11]],"date-time":"2022-04-11T02:02:33Z","timestamp":1649642553000},"page":"2447-2478","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["An improved multi-population whale optimization algorithm"],"prefix":"10.1007","volume":"13","author":[{"given":"Mario A.","family":"Navarro","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8781-7993","authenticated-orcid":false,"given":"Diego","family":"Oliva","sequence":"additional","affiliation":[]},{"given":"Alfonso","family":"Ramos-Michel","sequence":"additional","affiliation":[]},{"given":"Daniel","family":"Zald\u00edvar","sequence":"additional","affiliation":[]},{"given":"Bernardo","family":"Morales-Casta\u00f1eda","sequence":"additional","affiliation":[]},{"given":"Marco","family":"P\u00e9rez-Cisneros","sequence":"additional","affiliation":[]},{"given":"Arturo","family":"Valdivia","sequence":"additional","affiliation":[]},{"given":"Huiling","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,11]]},"reference":[{"issue":"3","key":"1537_CR1","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1515\/mt-2020-0039","volume":"63","author":"H Abderazek","year":"2021","unstructured":"Abderazek H, Hamza F, Yildiz AR, Sait SM (2021) Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design. Mater Test 63(3):266\u2013271","journal-title":"Mater Test"},{"issue":"15","key":"1537_CR2","doi-asserted-by":"publisher","first-page":"10237","DOI":"10.1007\/s00500-021-05973-1","volume":"25","author":"P Agarwal","year":"2021","unstructured":"Agarwal P, Mehta S, Abraham A (2021) A meta-heuristic density-based subspace clustering algorithm for high-dimensional data. Soft Comput 25(15):10237\u201310256","journal-title":"Soft Comput"},{"issue":"8","key":"1537_CR3","doi-asserted-by":"publisher","first-page":"e12779","DOI":"10.1111\/exsy.12779","volume":"38","author":"K Asghari","year":"2021","unstructured":"Asghari K, Masdari M, Gharehchopogh FS, Saneifard R (2021) Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel. Expert Syst 38(8):e12779","journal-title":"Expert Syst"},{"issue":"6","key":"1537_CR4","doi-asserted-by":"publisher","first-page":"e0252754","DOI":"10.1371\/journal.pone.0252754","volume":"16","author":"NM Ashraf","year":"2021","unstructured":"Ashraf NM, Mostafa RR, Sakr RH, Rashad M (2021) Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm. Plos One 16(6):e0252754","journal-title":"Plos One"},{"key":"1537_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.compstruc.2016.03.001","volume":"169","author":"A Askarzadeh","year":"2016","unstructured":"Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1\u201312","journal-title":"Comput Struct"},{"issue":"2\u20134","key":"1537_CR6","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1504\/IJVD.2019.109866","volume":"80","author":"CM Aye","year":"2019","unstructured":"Aye CM, Pholdee N, Yildiz AR, Bureerat S, Sait SM (2019) Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int J Veh Des 80(2\u20134):223\u2013240","journal-title":"Int J Veh Des"},{"issue":"1","key":"1537_CR7","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1023\/A:1015059928466","volume":"1","author":"HG Beyer","year":"2002","unstructured":"Beyer HG, Schwefel HP (2002) Evolution strategie\u2014-a comprehensive introduction. Natural Comput 1(1):3\u201352","journal-title":"Natural Comput"},{"issue":"2255","key":"1537_CR8","first-page":"1","volume":"1","author":"Y \u00c7elik","year":"2018","unstructured":"\u00c7elik Y, Kutucu H (2018) Solving the tension\/compression spring design problem by an improved firefly algorithm. IDDM 1(2255):1\u20137","journal-title":"IDDM"},{"key":"1537_CR9","doi-asserted-by":"publisher","first-page":"105783","DOI":"10.1016\/j.ast.2020.105783","volume":"100","author":"P Champasak","year":"2020","unstructured":"Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100:105783","journal-title":"Aerosp Sci Technol"},{"key":"1537_CR10","doi-asserted-by":"publisher","DOI":"10.1155\/2012\/638275","volume":"2012","author":"E Cuevas","year":"2012","unstructured":"Cuevas E, Gonzalez M, Zaldivar D, Perez-Cisneros M, Garc\u00eda G (2012) An algorithm for global optimization inspired by collective animal behavior. Discrete Dyn Nat Soc 2012: https:\/\/doi.org\/10.1155\/2012\/638275","journal-title":"Discrete Dyn Nat Soc"},{"key":"1537_CR11","volume-title":"Genetic algorithms in search, optimization, and machine learning","author":"G David","year":"1989","unstructured":"David G (1989) Genetic algorithms in search, optimization, and machine learning, 1st edn. Addison-Wesley, Boston","edition":"1"},{"key":"1537_CR12","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1016\/j.asoc.2017.08.038","volume":"61","author":"MA D\u00edaz-Cort\u00e9s","year":"2017","unstructured":"D\u00edaz-Cort\u00e9s MA, Cuevas E, G\u00e1lvez J, Camarena O (2017) A new metaheuristic optimization methodology based on fuzzy logic. Appl Soft Comput 61:549\u2013569","journal-title":"Appl Soft Comput"},{"key":"1537_CR13","doi-asserted-by":"crossref","unstructured":"Dickson A, Thomas C (2021) Identifying network intrusion using enhanced whale optimization algorithm. In: Intelligent systems, technologies and applications. Springer, pp 103\u2013116","DOI":"10.1007\/978-981-16-0730-1_7"},{"issue":"1","key":"1537_CR14","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/s00366-011-0241-y","volume":"29","author":"AH Gandomi","year":"2013","unstructured":"Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17\u201335","journal-title":"Eng Comput"},{"issue":"6","key":"1537_CR15","doi-asserted-by":"publisher","first-page":"617","DOI":"10.1007\/s10732-008-9080-4","volume":"15","author":"S Garc\u00eda","year":"2008","unstructured":"Garc\u00eda S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms\u2019 behaviour: a case study on the cec\u20192005 special session on real parameter optimization. J Heurist 15(6):617. https:\/\/doi.org\/10.1007\/s10732-008-9080-4","journal-title":"J Heurist"},{"issue":"5","key":"1537_CR16","doi-asserted-by":"publisher","first-page":"1583","DOI":"10.3390\/s21051583","volume":"21","author":"S Goyal","year":"2021","unstructured":"Goyal S, Bhushan S, Kumar Y, Bhutta MR, Ijaz MF, Son Y et al (2021) An optimized framework for energy-resource allocation in a cloud environment based on the whale optimization algorithm. Sensors 21(5):1583","journal-title":"Sensors"},{"key":"1537_CR17","doi-asserted-by":"crossref","unstructured":"Gupta S, Agarwal M, Jain S (2019) Automated genre classification of books using machine learning and natural language processing. In: 2019 9th international conference on cloud computing, data science & engineering (confluence). IEEE, pp 269\u2013272","DOI":"10.1109\/CONFLUENCE.2019.8776935"},{"issue":"1","key":"1537_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-71502-z","volume":"10","author":"EH Houssein","year":"2020","unstructured":"Houssein EH, Hosney ME, Elhoseny M, Oliva D, Mohamed WM, Hassaballah M (2020) Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics. Sci Rep 10(1):1\u201322","journal-title":"Sci Rep"},{"issue":"4\u20132","key":"1537_CR19","doi-asserted-by":"publisher","first-page":"218","DOI":"10.30630\/joiv.1.4-2.65","volume":"1","author":"K Hussain","year":"2017","unstructured":"Hussain K, Salleh MNM, Cheng S, Naseem R (2017) Funciones de referencia comunes para la evaluaci\u00f3n metaheur\u00edstica: una revisi\u00f3n. JOIV: Revista internacional de visualizaci\u00f3n inform\u00e1tica 1(4\u20132):218\u2013223","journal-title":"JOIV: Revista internacional de visualizaci\u00f3n inform\u00e1tica"},{"issue":"3","key":"1537_CR20","doi-asserted-by":"publisher","first-page":"3215","DOI":"10.32604\/cmc.2021.013034","volume":"66","author":"G Kadiravan","year":"2021","unstructured":"Kadiravan G, Sujatha P, Asvany T, Punithavathi R, Elhoseny M, Pustokhina I, Pustokhin DA, Shankar K (2021) Metaheuristic clustering protocol for healthcare data collection in mobile wireless multimedia sensor networks. Comput Mater Continua 66(3):3215\u20133231","journal-title":"Comput Mater Continua"},{"issue":"3","key":"1537_CR21","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1007\/s10898-007-9149-x","volume":"39","author":"D Karaboga","year":"2007","unstructured":"Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459\u2013471","journal-title":"J Glob Optim"},{"issue":"2\u20134","key":"1537_CR22","doi-asserted-by":"publisher","first-page":"330","DOI":"10.1504\/IJVD.2019.109875","volume":"80","author":"A Karaduman","year":"2019","unstructured":"Karaduman A, Y\u0131ld\u0131z BS, Y\u0131ld\u0131z AR (2019) Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry. Int J Veh Des 80(2\u20134):330\u2013345","journal-title":"Int J Veh Des"},{"issue":"2","key":"1537_CR23","doi-asserted-by":"publisher","first-page":"3199","DOI":"10.1007\/s12652-020-02480-3","volume":"12","author":"M Karpagam","year":"2021","unstructured":"Karpagam M, Geetha K, Rajan C (2021) A reactive search optimization algorithm for scientific workflow scheduling using clustering techniques. J Ambient Intell Human Comput 12(2):3199\u20133207","journal-title":"J Ambient Intell Human Comput"},{"issue":"9","key":"1537_CR24","doi-asserted-by":"publisher","first-page":"2401","DOI":"10.1007\/s13042-018-0878-6","volume":"10","author":"E Kaya","year":"2019","unstructured":"Kaya E, Uymaz SA, Kocer B (2019) Boosting galactic swarm optimization with abc. Int J Mach Learn Cybern 10(9):2401\u20132419","journal-title":"Int J Mach Learn Cybern"},{"key":"1537_CR25","doi-asserted-by":"crossref","unstructured":"Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN\u201995-international conference on neural networks, vol\u00a04. IEEE, pp 1942\u20131948","DOI":"10.1109\/ICNN.1995.488968"},{"key":"1537_CR26","doi-asserted-by":"publisher","unstructured":"Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN\u201995\u2014international conference on neural networks, vol\u00a04, pp 1942\u20131948. https:\/\/doi.org\/10.1109\/ICNN.1995.488968","DOI":"10.1109\/ICNN.1995.488968"},{"key":"1537_CR27","unstructured":"MacQueen J et\u00a0al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. Oakland, CA, USA, pp 281\u2013297"},{"issue":"2","key":"1537_CR28","first-page":"1567","volume":"188","author":"M Mahdavi","year":"2007","unstructured":"Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567\u20131579","journal-title":"Appl Math Comput"},{"key":"1537_CR29","doi-asserted-by":"publisher","first-page":"1853","DOI":"10.1007\/s11831-020-09443-z","volume":"28","author":"Z Meng","year":"2021","unstructured":"Meng Z, Li G, Wang X, Sait SM, Y\u0131ld\u0131z AR (2021) A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28:1853\u20131869","journal-title":"Arch Comput Methods Eng"},{"issue":"1","key":"1537_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-44565-w","volume":"9","author":"Z Miao","year":"2019","unstructured":"Miao Z, Gaynor KM, Wang J, Liu Z, Muellerklein O, Norouzzadeh MS, McInturff A, Bowie RC, Nathan R, Stella XY et al (2019) Insights and approaches using deep learning to classify wildlife. Sci Rep 9(1):1\u20139","journal-title":"Sci Rep"},{"key":"1537_CR31","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.knosys.2015.07.006","volume":"89","author":"S Mirjalili","year":"2015","unstructured":"Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228\u2013249","journal-title":"Knowl Based Syst"},{"key":"1537_CR32","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1016\/j.advengsoft.2016.01.008","volume":"95","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51\u201367","journal-title":"Adv Eng Softw"},{"issue":"3","key":"1537_CR33","first-page":"243","volume":"6","author":"S Mostafa Bozorgi","year":"2019","unstructured":"Mostafa Bozorgi S, Yazdani S (2019) Iwoa: an improved whale optimization algorithm for optimization problems. J Comput Des Eng 6(3):243\u2013259","journal-title":"J Comput Des Eng"},{"key":"1537_CR34","doi-asserted-by":"crossref","unstructured":"Mousavirad SJ, Schaefer G, Moghadam MH, Saadatmand M, Pedram M (2021) A population-based automatic clustering algorithm for image segmentation. In: Proceedings of the genetic and evolutionary computation conference companion, pp 1931\u20131936","DOI":"10.1145\/3449726.3463148"},{"issue":"1","key":"1537_CR35","doi-asserted-by":"publisher","first-page":"8","DOI":"10.3390\/e24010008","volume":"24","author":"SJ Mousavirad","year":"2022","unstructured":"Mousavirad SJ, Zabihzadeh D, Oliva D, Perez-Cisneros M, Schaefer G (2022) A grouping differential evolution algorithm boosted by attraction and repulsion strategies for masi entropy-based multi-level image segmentation. Entropy 24(1):8","journal-title":"Entropy"},{"key":"1537_CR36","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1016\/j.asoc.2015.10.034","volume":"38","author":"V Muthiah-Nakarajan","year":"2016","unstructured":"Muthiah-Nakarajan V, Noel MM (2016) Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion. Appl Soft Comput 38:771\u2013787","journal-title":"Appl Soft Comput"},{"issue":"2","key":"1537_CR37","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/BF00142899","volume":"1","author":"DR Oldroyd","year":"1986","unstructured":"Oldroyd DR (1986) Charles Darwin\u2019s theory of evolution: a review of our present understanding. Biol Philos 1(2):133\u2013168","journal-title":"Biol Philos"},{"key":"1537_CR38","doi-asserted-by":"publisher","first-page":"126683","DOI":"10.1016\/j.jpowsour.2019.05.089","volume":"435","author":"D Oliva","year":"2019","unstructured":"Oliva D, Abd Elaziz M, Elsheikh AH, Ewees AA (2019) A review on meta-heuristics methods for estimating parameters of solar cells. J Power Sources 435:126683","journal-title":"J Power Sources"},{"key":"1537_CR39","doi-asserted-by":"publisher","first-page":"100591","DOI":"10.1016\/j.swevo.2019.100591","volume":"51","author":"D Oliva","year":"2019","unstructured":"Oliva D, Nag S, Abd Elaziz M, Sarkar U, Hinojosa S (2019) Multilevel thresholding by fuzzy type ii sets using evolutionary algorithms. Swarm Evol Comput 51:100591","journal-title":"Swarm Evol Comput"},{"issue":"7","key":"1537_CR40","first-page":"1865","volume":"14","author":"W Pan","year":"2013","unstructured":"Pan W, Shen X, Liu B (2013) Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty. J Mach Learn Res 14(7):1865","journal-title":"J Mach Learn Res"},{"issue":"6","key":"1537_CR41","doi-asserted-by":"publisher","first-page":"640","DOI":"10.3139\/120.111529","volume":"62","author":"N Panagant","year":"2020","unstructured":"Panagant N, Pholdee N, Bureerat S, Kaen K, Yildiz AR, Sait SM (2020) Seagull optimization algorithm for solving real-world design optimization problems. Mater Test 62(6):640\u2013644. https:\/\/doi.org\/10.3139\/120.111529","journal-title":"Mater Test"},{"issue":"1","key":"1537_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/106365600568086","volume":"8","author":"MA Potter","year":"2000","unstructured":"Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1\u201329. https:\/\/doi.org\/10.1162\/106365600568086","journal-title":"Evol Comput"},{"key":"1537_CR43","doi-asserted-by":"publisher","first-page":"108214","DOI":"10.1016\/j.comnet.2021.108214","volume":"196","author":"IV Pustokhina","year":"2021","unstructured":"Pustokhina IV, Pustokhin DA, Lydia EL, Elhoseny M, Shankar K (2021) Energy efficient neuro-fuzzy cluster based topology construction with metaheuristic route planning algorithm for unmanned aerial vehicles. Comput Netw 196:108214","journal-title":"Comput Netw"},{"issue":"9","key":"1537_CR44","doi-asserted-by":"publisher","first-page":"1115","DOI":"10.1007\/s00170-011-3437-9","volume":"58","author":"SHA Rahmati","year":"2012","unstructured":"Rahmati SHA, Zandieh M (2012) A new biogeography-based optimization (bbo) algorithm for the flexible job shop scheduling problem. Int J Adv Manuf Technol 58(9):1115\u20131129","journal-title":"Int J Adv Manuf Technol"},{"issue":"13","key":"1537_CR45","doi-asserted-by":"publisher","first-page":"2232","DOI":"10.1016\/j.ins.2009.03.004","volume":"179","author":"E Rashedi","year":"2009","unstructured":"Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232\u20132248","journal-title":"Inf Sci"},{"key":"1537_CR46","first-page":"596","volume":"6","author":"SA Rather","year":"2017","unstructured":"Rather SA, Sharma N (2017) Gsa-bbo hybridization algorithm. Int J Adv Res Sci Eng 6:596\u2013608","journal-title":"Int J Adv Res Sci Eng"},{"key":"1537_CR47","doi-asserted-by":"publisher","first-page":"113428","DOI":"10.1016\/j.eswa.2020.113428","volume":"155","author":"E Rodriguez-Esparza","year":"2020","unstructured":"Rodriguez-Esparza E, Zanella-Calzada LA, Oliva D, Heidari AA, Zaldivar D, P\u00e9rez-Cisneros M, Foong LK (2020) An efficient harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428","journal-title":"Expert Systems with Applications"},{"key":"1537_CR48","doi-asserted-by":"crossref","unstructured":"Roy R, George KT (2017) Detecting insurance claims fraud using machine learning techniques. In: 2017 international conference on circuit, power and computing technologies (ICCPCT). IEEE, pp 1\u20136","DOI":"10.1109\/ICCPCT.2017.8074258"},{"issue":"8","key":"1537_CR49","first-page":"36","volume":"10","author":"RK Saidala","year":"2018","unstructured":"Saidala RK, Devarakonda N (2018) Multi-swarm whale optimization algorithm for data clustering problems using multiple cooperative strategies. Int J Intell Syst Appl 10(8):36","journal-title":"Int J Intell Syst Appl"},{"key":"1537_CR50","doi-asserted-by":"crossref","unstructured":"Sandgren E (1988) Nonlinear integer and discrete programming in mechanical design. In: International design engineering technical conferences and computers and information in engineering conference, vol 26584. American Society of Mechanical Engineers, pp 95\u2013105","DOI":"10.1115\/DETC1988-0012"},{"issue":"2\u20134","key":"1537_CR51","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1504\/IJVD.2019.109864","volume":"80","author":"R Sarangkum","year":"2019","unstructured":"Sarangkum R, Wansasueb K, Panagant N, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2019) Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation. Int J Veh Des 80(2\u20134):162\u2013175","journal-title":"Int J Veh Des"},{"key":"1537_CR52","doi-asserted-by":"crossref","unstructured":"Shivahare BD, Singh M, Gupta A, Ranjan S, Pareta D, Sahu BM (2021) Survey paper: Whale optimization algorithm and its variant applications. In: 2021 international conference on innovative practices in technology and management (ICIPTM). IEEE, pp 77\u201382","DOI":"10.1109\/ICIPTM52218.2021.9388344"},{"issue":"4","key":"1537_CR53","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341\u2013359","journal-title":"J Glob Optim"},{"key":"1537_CR54","doi-asserted-by":"publisher","first-page":"107854","DOI":"10.1016\/j.asoc.2021.107854","volume":"112","author":"Y Sun","year":"2021","unstructured":"Sun Y, Chen Y (2021) Multi-population improved whale optimization algorithm for high dimensional optimization. Appl Soft Comput 112:107854","journal-title":"Appl Soft Comput"},{"issue":"5","key":"1537_CR55","first-page":"1758","volume":"3","author":"T Velmurugan","year":"2012","unstructured":"Velmurugan T (2012) Efficiency of k-means and k-medoids algorithms for clustering arbitrary data points. Int J Comput Technol Appl 3(5):1758\u20131764","journal-title":"Int J Comput Technol Appl"},{"key":"1537_CR56","doi-asserted-by":"publisher","first-page":"105946","DOI":"10.1016\/j.asoc.2019.105946","volume":"88","author":"M Wang","year":"2020","unstructured":"Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946","journal-title":"Appl Soft Comput"},{"issue":"1","key":"1537_CR57","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"DH Wolpert","year":"1997","unstructured":"Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67\u201382","journal-title":"IEEE Trans Evol Comput"},{"key":"1537_CR58","doi-asserted-by":"crossref","unstructured":"Xiao C, Yu M, Zhang B, Wang H, Jiang C (2020) Discrete component prognosis for hybrid systems under intermittent faults. IEEE Trans Autom Sci Eng","DOI":"10.1109\/TASE.2020.3017755"},{"issue":"2","key":"1537_CR59","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1504\/IJBIC.2010.032124","volume":"2","author":"XS Yang","year":"2010","unstructured":"Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspir Comput 2(2):78\u201384","journal-title":"Int J Bio-inspir Comput"},{"key":"1537_CR60","doi-asserted-by":"crossref","unstructured":"Yang XS, Deb S (2009) Cuckoo search via l\u00e9vy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210\u2013214","DOI":"10.1109\/NABIC.2009.5393690"},{"issue":"7","key":"1537_CR61","doi-asserted-by":"publisher","first-page":"744","DOI":"10.3139\/120.111541","volume":"62","author":"ABS Yildiz","year":"2020","unstructured":"Yildiz ABS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2020) Sine-cosine optimization algorithm for the conceptual design of automobile components. Mater Test 62(7):744\u2013748. https:\/\/doi.org\/10.3139\/120.111541","journal-title":"Mater Test"},{"issue":"2","key":"1537_CR62","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1515\/mt-2020-0022","volume":"63","author":"AR Y\u0131ld\u0131z","year":"2021","unstructured":"Y\u0131ld\u0131z AR, Erda\u015f MU (2021) A new hybrid Taguchi-Salp swarm optimization algorithm for the robust design of real-world engineering problems. Mater Test 63(2):157\u2013162","journal-title":"Mater Test"},{"issue":"5","key":"1537_CR63","doi-asserted-by":"publisher","first-page":"492","DOI":"10.3139\/120.111509","volume":"62","author":"AR Y\u0131ld\u0131z","year":"2020","unstructured":"Y\u0131ld\u0131z AR, \u00d6zkaya H, Y\u0131ld\u0131z M, Bureerat S, Y\u0131ld\u0131z B, Sait SM (2020) The equilibrium optimization algorithm and the response surface-based metamodel for optimal structural design of vehicle components. Mater Test 62(5):492\u2013496","journal-title":"Mater Test"},{"issue":"4","key":"1537_CR64","doi-asserted-by":"publisher","first-page":"336","DOI":"10.1515\/mt-2020-0049","volume":"63","author":"BS Y\u0131ld\u0131z","year":"2021","unstructured":"Y\u0131ld\u0131z BS, Patel V, Pholdee N, Sait SM, Bureerat S, Y\u0131ld\u0131z AR (2021) Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design. Mater Test 63(4):336\u2013340","journal-title":"Mater Test"},{"key":"1537_CR65","doi-asserted-by":"crossref","unstructured":"Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Comput 1\u201313","DOI":"10.1007\/s00366-021-01368-w"},{"issue":"3","key":"1537_CR66","doi-asserted-by":"publisher","first-page":"e12666","DOI":"10.1111\/exsy.12666","volume":"38","author":"BS Yildiz","year":"2021","unstructured":"Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm. Expert Syst 38(3):e12666","journal-title":"Expert Syst"},{"issue":"11","key":"1537_CR67","doi-asserted-by":"publisher","first-page":"11470","DOI":"10.1109\/TIE.2020.3031515","volume":"68","author":"M Yu","year":"2020","unstructured":"Yu M, Xiao C, Zhang B (2020) Event-triggered discrete component prognosis of hybrid systems using degradation model selection. IEEE Trans Ind Electron 68(11):11470\u201311481","journal-title":"IEEE Trans Ind Electron"}],"container-title":["International Journal of Machine Learning and Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-022-01537-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13042-022-01537-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-022-01537-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,19]],"date-time":"2023-11-19T21:16:43Z","timestamp":1700428603000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13042-022-01537-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,11]]},"references-count":67,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2022,9]]}},"alternative-id":["1537"],"URL":"https:\/\/doi.org\/10.1007\/s13042-022-01537-3","relation":{},"ISSN":["1868-8071","1868-808X"],"issn-type":[{"value":"1868-8071","type":"print"},{"value":"1868-808X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,4,11]]},"assertion":[{"value":"15 September 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 February 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 April 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}