{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T05:50:55Z","timestamp":1726379455036},"reference-count":56,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T00:00:00Z","timestamp":1615766400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T00:00:00Z","timestamp":1615766400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61772176","61976082"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61976120"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Mach. Learn. & Cyber."],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1007\/s13042-021-01284-x","type":"journal-article","created":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T10:03:26Z","timestamp":1615802606000},"page":"1913-1938","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":26,"title":["Density peaks clustering based on k-nearest neighbors and self-recommendation"],"prefix":"10.1007","volume":"12","author":[{"given":"Lin","family":"Sun","sequence":"first","affiliation":[]},{"given":"Xiaoying","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Weiping","family":"Ding","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1518-3623","authenticated-orcid":false,"given":"Jiucheng","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Shiguang","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,15]]},"reference":[{"key":"1284_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2018.12.059","volume":"481","author":"M Yang","year":"2019","unstructured":"Yang M, Changchien S, Nataliani Y (2019) Unsupervised fuzzy model-based Gaussian clustering. Inf Sci 481:1\u201323","journal-title":"Inf Sci"},{"key":"1284_CR2","doi-asserted-by":"publisher","first-page":"68892","DOI":"10.1109\/ACCESS.2018.2880271","volume":"6","author":"L Sun","year":"2018","unstructured":"Sun L, Liu R, Xu J, Zhang S, Tian Y (2018) An Affinity propagation clustering method using hybrid kernel function with LLE. IEEE Access 6:68892\u201368909","journal-title":"IEEE Access"},{"issue":"7","key":"1284_CR3","doi-asserted-by":"publisher","first-page":"1085","DOI":"10.1007\/s13042-016-0628-6","volume":"9","author":"S Wei","year":"2018","unstructured":"Wei S, Li Z, Zhang C (2018) Combined constraint-based with metric-based in semi-supervised clustering ensemble. Int J Mach Learn Cybern 9(7):1085\u20131100","journal-title":"Int J Mach Learn Cybern"},{"key":"1284_CR4","doi-asserted-by":"publisher","first-page":"314","DOI":"10.1016\/j.eswa.2018.07.075","volume":"115","author":"SA Seyedi","year":"2019","unstructured":"Seyedi SA, Lotfi A, Moradi P, Qader NN (2019) Dynamic graph-based label propagation for density peaks clustering. Expert Syst Appl 115:314\u2013328","journal-title":"Expert Syst Appl"},{"key":"1284_CR5","doi-asserted-by":"publisher","first-page":"1179","DOI":"10.1007\/s13042-019-01031-3","volume":"11","author":"J Fan","year":"2020","unstructured":"Fan J, Jia P, Ge L (2020) $$\\text{ M}_{k-NN}$$G-DPC: density peaks clustering based on improved mutual K-nearest-neighbor graph. Int J Mach Learn Cybern 11:1179\u20131195","journal-title":"Int J Mach Learn Cybern"},{"key":"1284_CR6","doi-asserted-by":"publisher","unstructured":"Wang Y, Wang D, Zhang X, Pang W, Miao C, Tan A, Zhou Y (2020) McDPC: multi-center density peak clustering. Neural Comput Appl. https:\/\/doi.org\/10.1007\/s00521-020-04754-5","DOI":"10.1007\/s00521-020-04754-5"},{"key":"1284_CR7","doi-asserted-by":"publisher","first-page":"105454","DOI":"10.1016\/j.knosys.2019.105454","volume":"193","author":"D Cheng","year":"2020","unstructured":"Cheng D, Zhang S, Huang J (2020) Dense members of local cores-based density peaks clustering algorithm. Knowl Based Syst 193:105454","journal-title":"Knowl Based Syst"},{"key":"1284_CR8","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.neucom.2018.06.087","volume":"348","author":"M Parmar","year":"2019","unstructured":"Parmar M, Wang D, Zhang X, Tan AH, Miao C, Jiang J, Zhou Y (2019) REDPC: a residual error-based density peak clustering algorithm. Neurocomputing 348:82\u201396","journal-title":"Neurocomputing"},{"key":"1284_CR9","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1016\/j.ins.2018.01.013","volume":"436","author":"Y Geng","year":"2018","unstructured":"Geng Y, Li Q, Zheng R, Zhuang F, He R, Xiong N (2018) RECOME: a new density-based clustering algorithm using relative KNN kernel density. Inf Sci 436:13\u201330","journal-title":"Inf Sci"},{"key":"1284_CR10","unstructured":"MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: 5-th Berkeley symposium on mathematical statistics and probability, pp 281-297"},{"key":"1284_CR11","doi-asserted-by":"publisher","first-page":"104824","DOI":"10.1016\/j.knosys.2019.06.032","volume":"187","author":"Y Chen","year":"2020","unstructured":"Chen Y, Hu X, Fan W, Shen L, Zhang Z, Liu X et al (2020) Fast density peak clustering for large scale data based on kNN. Knowl Based Syst 187:104824","journal-title":"Knowl Based Syst"},{"issue":"20","key":"1284_CR12","doi-asserted-by":"publisher","first-page":"4474","DOI":"10.1016\/j.ins.2007.05.003","volume":"177","author":"C Hsu","year":"2007","unstructured":"Hsu C, Chen C, Su Y et al (2007) Hierarchical clustering of mixed data based on distance hierarchy. Inf Sci 177(20):4474\u20134492","journal-title":"Inf Sci"},{"issue":"8","key":"1284_CR13","doi-asserted-by":"publisher","first-page":"1575","DOI":"10.1109\/TKDE.2018.2792021","volume":"30","author":"S Li","year":"2018","unstructured":"Li S, Li L, Yan J, He H (2018) SDE: a novel clustering framework based on sparsity-density entropy. IEEE Trans Knowl Data Eng 30(8):1575\u20131587","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1284_CR14","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1016\/j.ins.2018.08.018","volume":"468","author":"S Dong","year":"2018","unstructured":"Dong S, Liu J, Liu Y, Zeng L, Xu C, Zhou T (2018) Clustering based on grid and local density with priority-based expansion for multi-density data. Inf Sci 468:103\u2013116","journal-title":"Inf Sci"},{"key":"1284_CR15","doi-asserted-by":"publisher","first-page":"106069","DOI":"10.1016\/j.asoc.2020.106069","volume":"88","author":"C Hireche","year":"2020","unstructured":"Hireche C, Drias H, Moulai H et al (2020) Grid based clustering for satisfiability solving. Appl Soft Comput 88:106069","journal-title":"Appl Soft Comput"},{"issue":"4","key":"1284_CR16","doi-asserted-by":"publisher","first-page":"1228","DOI":"10.1007\/s10489-018-1324-x","volume":"49","author":"J Chen","year":"2019","unstructured":"Chen J, Lin X, Xuan Q et al (2019) FGCH: a fast and grid based clustering algorithm for hybrid data stream. Appl Intell 49(4):1228\u20131244","journal-title":"Appl Intell"},{"key":"1284_CR17","volume-title":"Data Clustering","author":"XC Zhang","year":"2017","unstructured":"Zhang XC (2017) Data Clustering. Science Press, Beijing"},{"issue":"2","key":"1284_CR18","doi-asserted-by":"publisher","first-page":"185","DOI":"10.3390\/genes11020185","volume":"11","author":"W Zhang","year":"2020","unstructured":"Zhang W, Di Y (2020) Model-based clustering with measurement or estimation errors. Genes 11(2):185","journal-title":"Genes"},{"issue":"6191","key":"1284_CR19","doi-asserted-by":"publisher","first-page":"1492","DOI":"10.1126\/science.1242072","volume":"344","author":"A Rodriguez","year":"2014","unstructured":"Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492\u20131496","journal-title":"Science"},{"issue":"1","key":"1284_CR20","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1186\/s40537-019-0236-x","volume":"6","author":"S Heidari","year":"2019","unstructured":"Heidari S, Alborzi M, Radfar R, Afsharkazemi M, Ghatari A (2019) Big data clustering with varied density based on MapReduce. J Big Data 6(1):77","journal-title":"J Big Data"},{"key":"1284_CR21","doi-asserted-by":"publisher","first-page":"72936","DOI":"10.1109\/ACCESS.2019.2918952","volume":"7","author":"L Sun","year":"2019","unstructured":"Sun L, Liu R, Xu J et al (2019) An adaptive density peaks clustering method with fisher linear discriminant. IEEE Access 7:72936\u201372955","journal-title":"IEEE Access"},{"key":"1284_CR22","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1016\/j.neucom.2019.02.055","volume":"340","author":"X Fang","year":"2019","unstructured":"Fang X, Tie Z, Song F et al (2019) Robust subspace clustering via symmetry constrained latent low rank representation with converted nuclear norm. Neurocomputing 340:211\u2013221","journal-title":"Neurocomputing"},{"key":"1284_CR23","doi-asserted-by":"publisher","first-page":"104905","DOI":"10.1016\/j.knosys.2019.104905","volume":"184","author":"R Li","year":"2019","unstructured":"Li R, Yang X, Qin X et al (2019) Local gap density for clustering high-dimensional data with varying densities. Knowl Based Syst 184:104905","journal-title":"Knowl Based Syst"},{"issue":"1","key":"1284_CR24","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1109\/TFUZZ.2020.2989098","volume":"29","author":"L Sun","year":"2020","unstructured":"Sun L, Wang L, Ding W, Qian Y, Xu J (2020) Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets. IEEE Trans Fuzzy Syst 29(1):19\u201333","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"1284_CR25","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1016\/j.ins.2020.05.102","volume":"537","author":"L Sun","year":"2020","unstructured":"Sun L, Yin T, Ding W, Qian Y, Xu J (2020) Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems. Inf Sci 537:401\u2013424","journal-title":"Inf Sci"},{"key":"1284_CR26","doi-asserted-by":"publisher","first-page":"105373","DOI":"10.1016\/j.knosys.2019.105373","volume":"192","author":"L Sun","year":"2020","unstructured":"Sun L, Wang L, Ding W, Qian Y, Xu J (2020) Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems. Knowl Based Syst 192:105373","journal-title":"Knowl Based Syst"},{"key":"1284_CR27","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.knosys.2017.11.025","volume":"142","author":"J Xie","year":"2018","unstructured":"Xie J, Xiong Z, Zhang Y, Feng Y, Ma J (2018) Density core-based clustering algorithm with dynamic scanning radius. Knowl Based Syst 142:58\u201370","journal-title":"Knowl Based Syst"},{"key":"1284_CR28","doi-asserted-by":"publisher","first-page":"105867","DOI":"10.1016\/j.asoc.2019.105867","volume":"85","author":"M Angelova","year":"2019","unstructured":"Angelova M, Beliakov G, Zhu Y (2019) Density-based clustering using approximate natural neighbours. Appl Soft Comput 85:105867","journal-title":"Appl Soft Comput"},{"key":"1284_CR29","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.ins.2016.03.011","volume":"354","author":"J Xie","year":"2016","unstructured":"Xie J, Gao H, Xie W, Liu X, Grant P (2016) Robust clustering by detecting density peaks and assigning points based on fuzzy weighted $$K$$-nearest neighbors. Inf Sci 354:19\u201340","journal-title":"Inf Sci"},{"issue":"8","key":"1284_CR30","doi-asserted-by":"publisher","first-page":"1335","DOI":"10.1007\/s13042-017-0648-x","volume":"9","author":"M Du","year":"2018","unstructured":"Du M, Ding S, Xu X, Xue Y (2018) Density peaks clustering using geodesic distances. Int J Mach Learn Cybern 9(8):1335\u20131349","journal-title":"Int J Mach Learn Cybern"},{"issue":"4","key":"1284_CR31","doi-asserted-by":"publisher","first-page":"2477","DOI":"10.1109\/TII.2019.2929743","volume":"16","author":"J Hou","year":"2020","unstructured":"Hou J, Zhang A (2020) Enhancing density peak clustering via density normalization. IEEE Trans Ind Inf 16(4):2477\u20132485","journal-title":"IEEE Trans Ind Inf"},{"key":"1284_CR32","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1016\/j.ins.2018.03.031","volume":"450","author":"R Liu","year":"2018","unstructured":"Liu R, Wang H, Yu X (2018) Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf Sci 450:200\u2013226","journal-title":"Inf Sci"},{"key":"1284_CR33","first-page":"1","volume":"2019","author":"Z Jiang","year":"2019","unstructured":"Jiang Z, Liu X, Sun M (2019) A density peak clustering algorithm based on the K-nearest shannon entropy and tissue-like P system. Math Prob Eng 2019:1\u201313","journal-title":"Math Prob Eng"},{"key":"1284_CR34","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1016\/j.knosys.2017.07.010","volume":"133","author":"L Yaohui","year":"2017","unstructured":"Yaohui L, Zhengming M, Fang Y (2017) Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy. Knowl Based Syst 133:208\u2013220","journal-title":"Knowl Based Syst"},{"key":"1284_CR35","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.knosys.2016.02.001","volume":"99","author":"M Du","year":"2016","unstructured":"Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl Based Syst 99:135\u2013145","journal-title":"Knowl Based Syst"},{"key":"1284_CR36","unstructured":"Wang S, Wang D, Li C, Li Y (2015) Comment on\u201d Clustering by fast search and find of density peaks\u201d. arXiv preprint arXiv:1501.04267"},{"key":"1284_CR37","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.eswa.2016.10.005","volume":"68","author":"J Zhong","year":"2017","unstructured":"Zhong J, Peter W, Wei Y (2017) An intelligent and improved density and distance-based clustering approach for industrial survey data classification. Expert Syst Appl 68:21\u201328","journal-title":"Expert Syst Appl"},{"key":"1284_CR38","doi-asserted-by":"publisher","first-page":"60684","DOI":"10.1109\/ACCESS.2019.2912332","volume":"7","author":"C Wu","year":"2019","unstructured":"Wu C, Lee J, Isokawa T, Yao J, Xia Y (2019) Efficient clustering method based on density peaks with symmetric neighborhood relationship. IEEE Access 7:60684\u201360696","journal-title":"IEEE Access"},{"key":"1284_CR39","doi-asserted-by":"publisher","first-page":"510","DOI":"10.1016\/j.ins.2016.08.009","volume":"433","author":"Y Chen","year":"2018","unstructured":"Chen Y, Tang S, Zhou L, Wang C, Du J, Wang T, Pei S (2018) Decentralized clustering by finding loose and distributed density cores. Inf Sci 433:510\u2013526","journal-title":"Inf Sci"},{"key":"1284_CR40","first-page":"1192","volume":"1","author":"M Abbas","year":"2012","unstructured":"Abbas M, Shoukry A (2012) CMUNE: a clustering using mutual nearest neighbors algorithm. Inf Sci Sig Process Appl 1:1192\u20131197","journal-title":"Inf Sci Sig Process Appl"},{"key":"1284_CR41","first-page":"226","volume":"1","author":"M Ester","year":"1996","unstructured":"Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial Databases with Noise. Knowl Discov Data Min 1:226\u2013231","journal-title":"Knowl Discov Data Min"},{"key":"1284_CR42","doi-asserted-by":"publisher","first-page":"551","DOI":"10.1016\/j.patrec.2019.10.019","volume":"128","author":"S Sieranoja","year":"2019","unstructured":"Sieranoja S, Franti P (2019) Fast and general density peaks clustering. Pattern Recogn Lett 128:551\u2013558","journal-title":"Pattern Recogn Lett"},{"key":"1284_CR43","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1016\/0098-3004(84)90020-7","volume":"10","author":"J Bezdek","year":"1984","unstructured":"Bezdek J, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191\u2013203","journal-title":"Comput Geosci"},{"issue":"2","key":"1284_CR44","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1145\/304181.304187","volume":"28","author":"M Ankerst","year":"1999","unstructured":"Ankerst M, Breunig M, Kriegel H, Sander J (1999) OPTICS: ordering points to identify the clustering structure. ACM Sigmod Record 28(2):49\u201360","journal-title":"ACM Sigmod Record"},{"key":"1284_CR45","doi-asserted-by":"crossref","unstructured":"Floros D, Liu T, Pitsianis N, Sun X (2018) Sparse dual of the density peaks algorithm for cluster analysis of high-dimensional data. In: IEEE high performance extreme computing conference, pp 1-14","DOI":"10.1109\/HPEC.2018.8547519"},{"issue":"5814","key":"1284_CR46","doi-asserted-by":"publisher","first-page":"972","DOI":"10.1126\/science.1136800","volume":"315","author":"B Frey","year":"2007","unstructured":"Frey B, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972\u2013976","journal-title":"Science"},{"issue":"5","key":"1284_CR47","doi-asserted-by":"publisher","first-page":"603","DOI":"10.1109\/34.1000236","volume":"24","author":"D Comaniciu","year":"2002","unstructured":"Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603\u2013619","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"1284_CR48","volume-title":"Finite mixture models","author":"G McLachlan","year":"2004","unstructured":"McLachlan G, Peel D (2004) Finite mixture models. Wiley, Hoboken"},{"key":"1284_CR49","doi-asserted-by":"crossref","unstructured":"Lotfi A, Seyedi S, Moradi P (2016) An improved density peaks method for data clustering. In: IEEE 6th international conference on computer and knowledge engineering, pp 263-268","DOI":"10.1109\/ICCKE.2016.7802150"},{"issue":"8","key":"1284_CR50","doi-asserted-by":"publisher","first-page":"888","DOI":"10.1109\/34.868688","volume":"22","author":"J Shi","year":"2000","unstructured":"Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888\u2013905","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"1284_CR51","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1016\/j.patcog.2017.06.023","volume":"71","author":"L Bai","year":"2017","unstructured":"Bai L, Cheng X, Liang J, Shen H, Guo Y (2017) Fast density clustering strategies based on the k-means algorithm. Pattern Recogn 71:375\u2013386","journal-title":"Pattern Recogn"},{"key":"1284_CR52","first-page":"2837","volume":"11","author":"N Vinh","year":"2010","unstructured":"Vinh N, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837\u20132854","journal-title":"J Mach Learn Res"},{"issue":"383","key":"1284_CR53","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1080\/01621459.1983.10478008","volume":"78","author":"E Fowlkes","year":"1983","unstructured":"Fowlkes E, Mallows C (1983) A method for comparing two hierarchical clusterings. J Am Stat Asso 78(383):553\u2013569","journal-title":"J Am Stat Asso"},{"key":"1284_CR54","unstructured":"Huang Z (1997) Clustering large data sets with mixed numeric and categorical values. In: The First Pacific-Asia conference on knowledge discovery and data mining, pp 21C34"},{"key":"1284_CR55","doi-asserted-by":"crossref","DOI":"10.1002\/0471200611","volume-title":"Elements of information theory","author":"T Cover","year":"2001","unstructured":"Cover T, Thomas J (2001) Elements of information theory. Wiley, Hoboken"},{"issue":"336","key":"1284_CR56","doi-asserted-by":"publisher","first-page":"846","DOI":"10.1080\/01621459.1971.10482356","volume":"66","author":"W Rand","year":"1971","unstructured":"Rand W (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846\u2013850","journal-title":"J Am Stat Assoc"}],"container-title":["International Journal of Machine Learning and Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-021-01284-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s13042-021-01284-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-021-01284-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,23]],"date-time":"2023-10-23T04:42:11Z","timestamp":1698036131000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s13042-021-01284-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,15]]},"references-count":56,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["1284"],"URL":"https:\/\/doi.org\/10.1007\/s13042-021-01284-x","relation":{},"ISSN":["1868-8071","1868-808X"],"issn-type":[{"value":"1868-8071","type":"print"},{"value":"1868-808X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,15]]},"assertion":[{"value":"31 March 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 February 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 March 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}