{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:13:27Z","timestamp":1727064807352},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2019,11,14]],"date-time":"2019-11-14T00:00:00Z","timestamp":1573689600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,11,14]],"date-time":"2019-11-14T00:00:00Z","timestamp":1573689600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Outstanding Youth Science Foundation","award":["61822602"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Mach. Learn. & Cyber."],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1007\/s13042-019-01030-4","type":"journal-article","created":{"date-parts":[[2019,11,14]],"date-time":"2019-11-14T22:01:31Z","timestamp":1573768891000},"page":"729-745","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":58,"title":["Large-scale evolutionary optimization: a survey and experimental comparative study"],"prefix":"10.1007","volume":"11","author":[{"given":"Jun-Rong","family":"Jian","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0862-0514","authenticated-orcid":false,"given":"Zhi-Hui","family":"Zhan","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,11,14]]},"reference":[{"key":"1030_CR1","volume-title":"Optimization methods","author":"GY Shi","year":"2002","unstructured":"Shi GY, Dong JL (2002) Optimization methods. Higher Education Press, Beijing"},{"key":"1030_CR2","volume-title":"Practical methods of optimization","author":"R Fletcher","year":"1987","unstructured":"Fletcher R (1987) Practical methods of optimization. Wiley-Interscience, New York"},{"issue":"1","key":"1030_CR3","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1038\/scientificamerican0792-66","volume":"267","author":"JH Holland","year":"1992","unstructured":"Holland JH (1992) Genetic algorithms. Sci Am 267(1):66\u201372","journal-title":"Sci Am"},{"issue":"4","key":"1030_CR4","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Opt 11(4):341\u2013359","journal-title":"J Global Opt"},{"key":"1030_CR5","doi-asserted-by":"crossref","unstructured":"Storn R (1996) On the usage of differential evolution for function optimization. In: 1996 biennial conference of the North American fuzzy information processing, pp 519\u2013523","DOI":"10.1109\/NAFIPS.1996.534789"},{"key":"1030_CR6","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.cor.2015.09.006","volume":"67","author":"L Cui","year":"2016","unstructured":"Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155\u2013173","journal-title":"Comput Oper Res"},{"key":"1030_CR7","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1016\/j.asoc.2016.06.011","volume":"47","author":"G Li","year":"2016","unstructured":"Li G, Lin Q, Cui L, Du Z, Liang Z, Chen J, Lu N, Ming Z (2016) A novel hybrid differential evolution algorithm with modified CoDE and JADE. Appl Soft Comput 47:577\u2013599","journal-title":"Appl Soft Comput"},{"key":"1030_CR8","doi-asserted-by":"publisher","first-page":"178","DOI":"10.1007\/3-540-61723-X_982","volume-title":"Parallel Problem Solving from Nature \u2014 PPSN IV","author":"H. M\u00fchlenbein","year":"1996","unstructured":"Muhlenbein H (1996) From recombination of genes to the estimation of distributions I. binary parameters. In: International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, pp 178\u2013187"},{"issue":"1","key":"1030_CR9","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1108\/02644400410511864","volume":"21","author":"QF Zhang","year":"2004","unstructured":"Zhang QF, Sun JY, Tsang E, Ford J (2004) Hybrid estimation of distribution algorithm for global optimization. Eng Comput 21(1):91\u2013107","journal-title":"Eng Comput"},{"key":"1030_CR10","first-page":"1942","volume-title":"IEEE Int","author":"J Kennedy","year":"1995","unstructured":"Kennedy J, Eberhart RC (1995) Particle swarm optimization. IEEE Int. Conf. Neural Netw, Perth, pp 1942\u20131948"},{"key":"1030_CR11","unstructured":"Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: the 6th Int. Symp. Micromachine Human Sci. Nagoya, pp 39\u201343"},{"issue":"1","key":"1030_CR12","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1109\/3477.484436","volume":"26","author":"M. Dorigo","year":"1996","unstructured":"Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29\u201341","journal-title":"IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)"},{"key":"1030_CR13","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.swevo.2018.05.002","volume":"43","author":"L Cui","year":"2018","unstructured":"Cui L, Li G, Luo Y, Chen F, Ming Z, Lu N, Lu J (2018) An enhanced artificial bee colony algorithm with dual-population framework. Swarm Evol Comput 43:184\u2013206","journal-title":"Swarm Evol Comput"},{"issue":"15","key":"1030_CR14","doi-asserted-by":"publisher","first-page":"2985","DOI":"10.1016\/j.ins.2008.02.017","volume":"178","author":"ZY Yang","year":"2008","unstructured":"Yang ZY, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985\u20132999","journal-title":"Inf Sci"},{"key":"1030_CR15","doi-asserted-by":"crossref","unstructured":"Liu Y, Yao X, Zhao Q, Higuchi T (2001) Scaling up fast evolutionary programming with cooperative coevolution. In: IEEE Congr. Evol. Comput., pp 1101\u20131108","DOI":"10.1109\/CEC.2001.934314"},{"key":"1030_CR16","unstructured":"Descartes R (1956) Discourse on method, 1st edn. Perentice Hall, Upper Saddle River"},{"key":"1030_CR17","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/3-540-58484-6_269","volume-title":"Parallel Problem Solving from Nature \u2014 PPSN III","author":"Mitchell A. Potter","year":"1994","unstructured":"Potter MA, Jong KAD (1994) A cooperative coevolutionary approach to function optimization. In: International Conference on Parallel Problem Solving from Nature, pp 249\u2013257"},{"issue":"3","key":"1030_CR18","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1109\/TEVC.2004.826069","volume":"8","author":"FV Bergh","year":"2004","unstructured":"Bergh FV, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225\u2013239","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"1030_CR19","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1109\/TEVC.2011.2112662","volume":"16","author":"X Li","year":"2012","unstructured":"Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210\u2013224","journal-title":"IEEE Trans Evol Comput"},{"issue":"15","key":"1030_CR20","doi-asserted-by":"publisher","first-page":"2985","DOI":"10.1016\/j.ins.2008.02.017","volume":"178","author":"Z Yang","year":"2008","unstructured":"Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985\u20132999","journal-title":"Inf Sci"},{"key":"1030_CR21","first-page":"1080","volume-title":"Lecture Notes in Computer Science","author":"Yan-jun Shi","year":"2005","unstructured":"Shi Y, Teng H, Li Z (2005) Cooperative co-evolutionary differential evolution for function optimization. In: International Conference on Natural Computation, pp 1080\u20131088"},{"key":"1030_CR22","unstructured":"Yang Z, Tang K, Yao X (2008) Multilevel cooperative coevolution for large scale optimization. In: IEEE Congr. Evol. Comput., pp 1663\u20131670"},{"key":"1030_CR23","doi-asserted-by":"crossref","unstructured":"Omidvar MN, Li X, Yao X (2010) Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: IEEE Congr. Evol. Comput., pp 1762\u20131769","DOI":"10.1109\/CEC.2010.5585979"},{"issue":"3","key":"1030_CR24","doi-asserted-by":"publisher","first-page":"378","DOI":"10.1109\/TEVC.2013.2281543","volume":"18","author":"M Omidvar","year":"2014","unstructured":"Omidvar M, Li X, Mei Y, Yao X (2014) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378\u2013393","journal-title":"IEEE Trans Evol Comput"},{"key":"1030_CR25","doi-asserted-by":"crossref","unstructured":"Ling YB, Li HJ, Cao B (2016) Cooperative co-evolution with graph-based differential grouping for large scale global optimization. In: IEEE International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, pp 95\u2013102","DOI":"10.1109\/FSKD.2016.7603157"},{"key":"1030_CR26","doi-asserted-by":"crossref","unstructured":"Takahama T, Sakai S (2012) Large scale optimization by differential evolution with landscape modality detection and a diversity archive. In: IEEE Congr. Evol. Comput., pp 2842\u20132849","DOI":"10.1109\/CEC.2012.6252911"},{"key":"1030_CR27","doi-asserted-by":"crossref","unstructured":"Kushida J, Hara A, Takahama T (2015) Rank-based differential evolution with multiple mutation strategies for large scale global optimization. In: IEEE Congr. Evol. Comput., pp 353\u2013360","DOI":"10.1109\/CEC.2015.7256913"},{"issue":"2","key":"1030_CR28","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1109\/TCYB.2014.2322602","volume":"45","author":"C Ran","year":"2015","unstructured":"Ran C, Jin YC (2015) A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern 45(2):191\u2013204","journal-title":"IEEE Trans Cybern"},{"key":"1030_CR29","doi-asserted-by":"crossref","unstructured":"Ran C, Jin YC (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43\u201360","DOI":"10.1016\/j.ins.2014.08.039"},{"key":"1030_CR30","doi-asserted-by":"crossref","unstructured":"Yang Q, Xie HY, Chen WN, Zhang J (2016) Multiple parents guided differential evolution for large scale optimization. In: IEEE Congr. Evol. Comput., pp 3549\u20133556","DOI":"10.1109\/CEC.2016.7744239"},{"key":"1030_CR31","doi-asserted-by":"crossref","unstructured":"Zhao SZ, Liang JJ, Suganthan PN, Tasgetiren MF (2008) Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: IEEE Congr. Evol. Comput., pp 3845\u20133852","DOI":"10.1109\/CEC.2008.4631320"},{"key":"1030_CR32","unstructured":"Molina D, Herrera F (2015) Iterative hybridization of DE with local search for the cec2015 special session on large scale global optimization. In: IEEE Congr. Evol. Comput., pp 1974\u20131978"},{"issue":"7","key":"1030_CR33","doi-asserted-by":"publisher","first-page":"2166","DOI":"10.1109\/TCYB.2017.2728725","volume":"48","author":"YF Ge","year":"2018","unstructured":"Ge YF, Yu WJ, Lin Y, Gong YJ, Zhan ZH, Chen WN, Zhang J (2018) Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans Cybern 48(7):2166\u20132180","journal-title":"IEEE Trans Cybern"},{"issue":"11","key":"1030_CR34","doi-asserted-by":"publisher","first-page":"2089","DOI":"10.1007\/s00500-010-0640-9","volume":"15","author":"M Weber","year":"2011","unstructured":"Weber M, Neri F, Tirronen V (2011) Shuffle or update parallel differential evolution for large-scale optimization. Appl Soft Comput 15(11):2089\u20132107","journal-title":"Appl Soft Comput"},{"issue":"1","key":"1030_CR35","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1016\/j.jpdc.2012.02.019","volume":"73","author":"H Wang","year":"2013","unstructured":"Wang H, Rahnamayan S, Wu ZJ (2013) Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. J Parallel Distrib Comput 73(1):62\u201373","journal-title":"J Parallel Distrib Comput"},{"key":"1030_CR36","unstructured":"Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer. In: IEEE Int. Swarm Intelligence Symposium, pp 124\u2013129"},{"issue":"1","key":"1030_CR37","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"DH Wolpert","year":"1997","unstructured":"Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67\u201382","journal-title":"IEEE Trans Evol Comput"},{"key":"1030_CR38","unstructured":"Tang K, Li X, Suganthan P, Yang Z, Weise T (2009) Benchmark functions for the cec 2010 special session and competition on large scale global optimization. In: Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China"},{"key":"1030_CR39","unstructured":"Li X, Tang K, Omidvar MN, Yang Z, Qin K (2013) Benchmark functions for the cec 2013 special session and competition on large scale global optimization. In: Evol. Comput. Mach. Learn. Subpopulation, Tech. Rep. RMIT University, Melbourne"},{"key":"1030_CR40","doi-asserted-by":"crossref","unstructured":"Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: IEEE World Congr. Comput. Intell., pp 69\u201373","DOI":"10.1109\/ICEC.1998.699146"},{"key":"1030_CR41","unstructured":"Yang Z, Tang K, Yao X (2007) Differential evolution for high-dimensional function optimization In: IEEE Congr. Evol. Comput., pp 3523\u20133530"},{"key":"1030_CR42","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2019.2933499","author":"X Zhang","year":"2019","unstructured":"Zhang X, Du KJ, Zhan ZH, Kwong S, Gu TL, Zhang J (2019) Cooperative co-evolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties. IEEE Trans Cybern. https:\/\/doi.org\/10.1109\/TCYB.2019.2933499","journal-title":"IEEE Trans Cybern"},{"key":"1030_CR43","doi-asserted-by":"crossref","unstructured":"Omidvar MN, Li X, Yao X (2011) Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms. In: Conference on Genetic and Evolutionary Computation, pp 1115\u20131122","DOI":"10.1145\/2001576.2001727"},{"key":"1030_CR44","doi-asserted-by":"crossref","unstructured":"Omidvar MN, Kazimipour B, Li X, Yao X (2016) CBCC3\u2014a contribution-based cooperative co-evolutionary algorithm with improved exploration\/exploitation balance. In: IEEE Congr. Evol. Comput., pp 3541\u20133548","DOI":"10.1109\/CEC.2016.7744238"},{"key":"1030_CR45","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2019.2933499","author":"ZJ Wang","year":"2019","unstructured":"Wang ZJ, Zhan ZH, Yu WJ, Lin Y, Zhang J, Gu TL, Zhang J (2019) Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE Trans Cybern. https:\/\/doi.org\/10.1109\/TCYB.2019.2933499","journal-title":"IEEE Trans Cybern"},{"key":"1030_CR46","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1016\/j.ins.2015.09.009","volume":"329","author":"G Wu","year":"2016","unstructured":"Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci 329:329\u2013345","journal-title":"Inf Sci"},{"issue":"5","key":"1030_CR47","doi-asserted-by":"publisher","first-page":"2347","DOI":"10.1109\/TPWRS.2014.2302033","volume":"29","author":"A Glotic","year":"2014","unstructured":"Glotic A, Glotic A, Kitak P, Pihler J, Ticar I (2014) Parallel self-adaptive differential evolution algorithm for solving short-term hydro scheduling problem. IEEE Trans Power Syst 29(5):2347\u20132358","journal-title":"IEEE Trans Power Syst"},{"issue":"3","key":"1030_CR48","doi-asserted-by":"publisher","first-page":"704","DOI":"10.1109\/TPDS.2016.2597826","volume":"28","author":"ZH Zhan","year":"2017","unstructured":"Zhan ZH, Liu X, Zhang H, Yu Z, Weng J, Li Y, Gu T, Zhang J (2017) Cloudde: a heterogeneous differential evolution algorithm and its distributed cloud version. IEEE Trans Parallel Distrib Syst 28(3):704\u2013716","journal-title":"IEEE Trans Parallel Distrib Syst"},{"key":"1030_CR49","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2920887","author":"XF Liu","year":"2019","unstructured":"Liu XF, Zhan ZH, Gu TL, Kwong S, Lu Z, Duh HBL, Zhang J (2019) Neural network-based information transfer for dynamic optimization. IEEE Trans Neural Netw Learn Syst. https:\/\/doi.org\/10.1109\/TNNLS.2019.2920887","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"1030_CR50","doi-asserted-by":"publisher","first-page":"72649","DOI":"10.1109\/ACCESS.2018.2881538","volume":"6","author":"XF Liu","year":"2018","unstructured":"Liu XF, Zhan ZH, Zhang J (2018) Neural network for change direction prediction in dynamic optimization. IEEE Access 6:72649\u201372662","journal-title":"IEEE Access"},{"key":"1030_CR51","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2019.2927780","author":"H Zhao","year":"2019","unstructured":"Zhao H, Zhan ZH, Lin Y, Chen X, Luo XN, Zhang J, Kwong S, Zhang J (2019) Local binary pattern-based adaptive differential evolution for multimodal optimization problems. IEEE Trans Cybern. https:\/\/doi.org\/10.1109\/TCYB.2019.2927780","journal-title":"IEEE Trans Cybern"},{"issue":"1","key":"1030_CR52","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1109\/TEVC.2019.2910721","volume":"24","author":"Zi-Jia Wang","year":"2020","unstructured":"Wang ZJ, Zhan ZH, Lin Y, Yu WJ, Wang H, Kwong S, Zhang J (2019) Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Trans Evol Comput. https:\/\/doi.org\/10.1109\/tevc.2019.2910721","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"6","key":"1030_CR53","doi-asserted-by":"publisher","first-page":"894","DOI":"10.1109\/TEVC.2017.2769108","volume":"22","author":"ZJ Wang","year":"2018","unstructured":"Wang ZJ, Zhan ZH, Lin Y, Yu WJ, Yuan HQ, Gu TL, Kwong S, Zhang J (2018) Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Trans Evol Comput 22(6):894\u2013908","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"1030_CR54","doi-asserted-by":"publisher","first-page":"445","DOI":"10.1109\/TSMCB.2012.2209115","volume":"43","author":"ZH Zhan","year":"2013","unstructured":"Zhan ZH, Li J, Cao J, Zhang J, Chung H, Shi YH (2013) Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans Cybern 43(2):445\u2013463","journal-title":"IEEE Trans Cybern"},{"issue":"4","key":"1030_CR55","doi-asserted-by":"publisher","first-page":"587","DOI":"10.1109\/TEVC.2018.2875430","volume":"23","author":"XF Liu","year":"2019","unstructured":"Liu XF, Zhan ZH, Gao Y, Zhang J, Kwong S, Zhang J (2019) Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans Evol Comput 23(4):587\u2013602","journal-title":"IEEE Trans Evol Comput"},{"issue":"8","key":"1030_CR56","doi-asserted-by":"publisher","first-page":"2912","DOI":"10.1109\/TCYB.2018.2832640","volume":"49","author":"ZG Chen","year":"2019","unstructured":"Chen ZG, Zhan ZH, Lin Y, Gong YJ, Yuan HQ, Gu TL, Kwong S, Zhang J (2019) Multiobjective cloud workflow scheduling: a multiple populations ant colony system approach. IEEE Trans Cybern 49(8):2912\u20132926","journal-title":"IEEE Trans Cybern"},{"issue":"4","key":"1030_CR57","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2788397","volume":"47","author":"ZH Zhan","year":"2015","unstructured":"Zhan ZH, Liu XF, Gong YJ, Zhang J, Chung HSH, Li Y (2015) Cloud computing resource scheduling and a survey of its evolutionary approaches. ACM Comput Surv 47(4):1\u201333","journal-title":"ACM Comput Surv"},{"issue":"1","key":"1030_CR58","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1109\/TEVC.2016.2623803","volume":"22","author":"XF Liu","year":"2018","unstructured":"Liu XF, Zhan ZH, Deng D, Li Y, Gu TL, Zhang J (2018) An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans Evol Comput 22(1):113\u2013128","journal-title":"IEEE Trans Evol Comput"},{"key":"1030_CR59","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1016\/j.asoc.2014.02.003","volume":"19","author":"L Ma","year":"2014","unstructured":"Ma L, Gong M, Liu J, Cai Q, Jiao L (2014) Multi-level learning based memetic algorithm for community detection. Appl Soft Comput. 19:121\u2013133","journal-title":"Appl Soft Comput."},{"issue":"9","key":"1030_CR60","doi-asserted-by":"publisher","first-page":"3347","DOI":"10.1109\/TCYB.2018.2860284","volume":"49","author":"L Ma","year":"2019","unstructured":"Ma L, Li J, Lin Q, Gong M, Coello CAC, Ming Z (2019) Reliable link inference for network data with community structure. IEEE Trans Cybern 49(9):3347\u20133361","journal-title":"IEEE Trans Cybern"}],"container-title":["International Journal of Machine Learning and Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-019-01030-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s13042-019-01030-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-019-01030-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,13]],"date-time":"2020-11-13T00:35:31Z","timestamp":1605227731000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s13042-019-01030-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,11,14]]},"references-count":60,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2020,3]]}},"alternative-id":["1030"],"URL":"https:\/\/doi.org\/10.1007\/s13042-019-01030-4","relation":{},"ISSN":["1868-8071","1868-808X"],"issn-type":[{"value":"1868-8071","type":"print"},{"value":"1868-808X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,11,14]]},"assertion":[{"value":"27 August 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 October 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 November 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}