{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T02:07:14Z","timestamp":1716862034451},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2017,8,12]],"date-time":"2017-08-12T00:00:00Z","timestamp":1502496000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61403287","61472293","31201121","61572381","61273303"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2014M552039"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003819","name":"Natural Science Foundation of Hubei Province","doi-asserted-by":"publisher","award":["2014CFB288"],"id":[{"id":"10.13039\/501100003819","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Mach. Learn. & Cyber."],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1007\/s13042-017-0706-4","type":"journal-article","created":{"date-parts":[[2017,8,12]],"date-time":"2017-08-12T17:24:02Z","timestamp":1502558642000},"page":"155-171","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["Mass classification of benign and malignant with a new twin support vector machine joint \n \n \n \n $${l_{2,1}}$$\n \n \n \n l\n \n 2\n ,\n 1\n \n \n \n \n -norm"],"prefix":"10.1007","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3467-5607","authenticated-orcid":false,"given":"Xiaoming","family":"Liu","sequence":"first","affiliation":[]},{"given":"Ting","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Leilei","family":"Zhai","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,12]]},"reference":[{"issue":"5","key":"706_CR1","doi-asserted-by":"crossref","first-page":"E359","DOI":"10.1002\/ijc.29210","volume":"136","author":"J Ferlay","year":"2015","unstructured":"Ferlay J et al (2015) \u201cCancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012\u201d. Int J Cancer 136(5):E359\u2013E386","journal-title":"Int J Cancer"},{"issue":"4","key":"706_CR2","doi-asserted-by":"publisher","first-page":"1001","DOI":"10.1109\/TMI.2011.2105886","volume":"30","author":"M Samulski","year":"2011","unstructured":"Samulski M, Karssemeijer N (2011) Optimizing case-based detection performance in a multiview CAD system for mammography. IEEE Trans Med Imaging 30(4):1001\u20131009","journal-title":"IEEE Trans Med Imaging"},{"issue":"1","key":"706_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1687-6180-2015-1","volume":"2015","author":"X Liu","year":"2015","unstructured":"Liu X, Mei M, Liu J, Hu W (2015) \u201cMicrocalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method\u201d. EURASIP J Adv Signal Process 2015(1):1","journal-title":"EURASIP J Adv Signal Process"},{"issue":"2","key":"706_CR4","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1109\/TITB.2008.2009441","volume":"13","author":"J Tang","year":"2009","unstructured":"Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13(2):236\u2013251","journal-title":"IEEE Trans Inf Technol Biomed"},{"issue":"6","key":"706_CR5","doi-asserted-by":"publisher","first-page":"880","DOI":"10.1109\/TMI.2007.895460","volume":"26","author":"NH Eltonsy","year":"2007","unstructured":"Eltonsy NH, Tourassi GD, Elmaghraby AS (2007) A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging 26(6):880\u2013889","journal-title":"IEEE Trans Med Imaging"},{"issue":"1","key":"706_CR6","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1016\/j.cmpb.2014.01.014","volume":"114","author":"DC Pereira","year":"2014","unstructured":"Pereira DC, Ramos RP, Do Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Prog Biomed 114(1):88\u2013101","journal-title":"Comput Methods Prog Biomed"},{"issue":"5","key":"706_CR7","doi-asserted-by":"publisher","first-page":"857","DOI":"10.1088\/0031-9155\/40\/5\/010","volume":"40","author":"H-P Chan","year":"1995","unstructured":"Chan H-P et al (1995) Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Phys Med Biol 40(5):857\u2013876","journal-title":"Phys Med Biol"},{"issue":"1","key":"706_CR8","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1016\/j.compbiomed.2011.10.016","volume":"42","author":"MM Eltoukhy","year":"2012","unstructured":"Eltoukhy MM, Faye I, Samir BB (2012) A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Comput Biol Med 42(1):123\u2013128","journal-title":"Comput Biol Med"},{"issue":"4","key":"706_CR9","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1016\/j.patcog.2005.07.006","volume":"39","author":"H Cheng","year":"2006","unstructured":"Cheng H, Shi X, Min R, Hu L, Cai X, Du H (2006) Approaches for automated detection and classification of masses in mammograms. Patt Recognit 39(4):646\u2013668","journal-title":"Patt Recognit"},{"key":"706_CR10","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1109\/RBME.2012.2232289","volume":"6","author":"K Ganesan","year":"2013","unstructured":"Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng K-H (2013) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77\u201398","journal-title":"IEEE Rev Biomed Eng"},{"issue":"3","key":"706_CR11","doi-asserted-by":"publisher","first-page":"910","DOI":"10.1109\/JSYST.2013.2286539","volume":"8","author":"X Liu","year":"2014","unstructured":"Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst J 8(3):910\u2013920","journal-title":"IEEE Syst J"},{"key":"706_CR12","doi-asserted-by":"crossref","unstructured":"Shmilovici A (2005) Support vector machines. In: Data mining and knowledge discovery handbook. Springer, pp\u00a0257\u2013276","DOI":"10.1007\/0-387-25465-X_12"},{"issue":"3","key":"706_CR13","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1023\/A:1018628609742","volume":"9","author":"JA Suykens","year":"1999","unstructured":"Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293\u2013300","journal-title":"Neural Process Lett"},{"key":"706_CR14","unstructured":"Sun B, Ng WW, Chan PP (2016) Improved sparse LSSVMS based on the localized generalization error model. Int J Mach Learn Cybern 1\u20139"},{"issue":"2","key":"706_CR15","doi-asserted-by":"publisher","first-page":"659","DOI":"10.3233\/IFS-151785","volume":"30","author":"X Pan","year":"2016","unstructured":"Pan X, Xu Y (2016) Two effective sample selection methods for support vector machine. J Intell Fuzzy Syst 30(2):659\u2013670","journal-title":"J Intell Fuzzy Syst"},{"key":"706_CR16","doi-asserted-by":"crossref","unstructured":"He Q, Wang X, Chen J, Yan L (2006) A parallel genetic algorithm for solving the inverse problem of support vector machines. Adv Mach Learn Cybern 871\u2013879","DOI":"10.1007\/11739685_91"},{"issue":"01","key":"706_CR17","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1142\/S0218001408006144","volume":"22","author":"X-Z Wang","year":"2008","unstructured":"Wang X-Z, Lu S-X, Zhai J-H (2008) Fast fuzzy multicategory SVM based on support vector domain description. Int J Pattern Recognit Artif Intell 22(01):109\u2013120","journal-title":"Int J Pattern Recognit Artif Intell"},{"issue":"3","key":"706_CR18","doi-asserted-by":"publisher","first-page":"1185","DOI":"10.3233\/IFS-151729","volume":"29","author":"X-Z Wang","year":"2015","unstructured":"Wang X-Z, RAR Ashfaq, Fu A-M (2015) \u201cFuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185\u20131196","journal-title":"J Intell Fuzzy Syst"},{"key":"706_CR19","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1016\/j.ins.2013.05.010","volume":"244","author":"L Hu","year":"2013","unstructured":"Hu L, Lu S, Wang X (2013) A new and informative active learning approach for support vector machine. Inf Sci 244:142\u2013160","journal-title":"Inf Sci"},{"issue":"1","key":"706_CR20","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1049\/iet-cvi.2015.0101","volume":"10","author":"Y Qi","year":"2016","unstructured":"Qi Y, Zhang G (2016) Strategy of active learning support vector machine for image retrieval. IET Comput Vis 10(1):87\u201394","journal-title":"IET Comput Vis"},{"key":"706_CR21","volume-title":"pp","author":"F Dufrenois","year":"2015","unstructured":"Dufrenois F, Noyer JC (2015) Generalized eigenvalue proximal support vector machines for outlier description. In: 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp 1\u20139: IEEE"},{"issue":"1","key":"706_CR22","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/s11590-008-0092-7","volume":"3","author":"R Khemchandani","year":"2009","unstructured":"Khemchandani R, Chandra S (2009) Optimal kernel selection in twin support vector machines. Optim Lett 3(1):77\u201388","journal-title":"Optim Lett"},{"issue":"4","key":"706_CR23","doi-asserted-by":"publisher","first-page":"7535","DOI":"10.1016\/j.eswa.2008.09.066","volume":"36","author":"MA Kumar","year":"2009","unstructured":"Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535\u20137543","journal-title":"Expert Syst Appl"},{"issue":"2","key":"706_CR24","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1007\/s11425-013-4718-6","volume":"57","author":"Y Tian","year":"2014","unstructured":"Tian Y, Ju X, Qi Z, Shi Y (2014) Improved twin support vector machine. Sci China Math 57(2):417\u2013432","journal-title":"Sci China Math"},{"issue":"6","key":"706_CR25","doi-asserted-by":"publisher","first-page":"962","DOI":"10.1109\/TNN.2011.2130540","volume":"22","author":"Y-H Shao","year":"2011","unstructured":"Shao Y-H, Zhang C-H, Wang X-B, Deng N-Y (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962\u2013968","journal-title":"IEEE Trans Neural Netw"},{"issue":"4","key":"706_CR26","doi-asserted-by":"publisher","first-page":"956","DOI":"10.1007\/s10489-015-0736-0","volume":"44","author":"Y Xu","year":"2016","unstructured":"Xu Y, Chen M, Yang Z, Li G (2016) \u03bd-twin support vector machine with Universum data for classification. Appl Intell 44(4):956\u2013968","journal-title":"Appl Intell"},{"key":"706_CR27","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1016\/j.knosys.2014.08.008","volume":"71","author":"Y Xu","year":"2014","unstructured":"Xu Y, Yu J, Zhang Y (2014) KNN-based weighted rough \u03bd-twin support vector machine. Knowl-Based Syst 71:303\u2013313","journal-title":"Knowl-Based Syst"},{"issue":"2","key":"706_CR28","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1109\/TNNLS.2015.2513006","volume":"28","author":"Y Xu","year":"2017","unstructured":"Xu Y, Yang Z, Pan X (2017) A novel twin support-vector machine with pinball loss. IEEE Trans Neural Netw Learn Syst 28(2):359\u2013370","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"issue":"1","key":"706_CR29","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1016\/j.eij.2014.12.003","volume":"16","author":"D Tomar","year":"2015","unstructured":"Tomar D, Agarwal S (2015) Twin support vector machine: a review from 2007 to 2014. Egypt Inf J 16(1):55\u201369","journal-title":"Egypt Inf J"},{"key":"706_CR30","doi-asserted-by":"publisher","first-page":"1039","DOI":"10.1016\/j.procs.2013.05.132","volume":"17","author":"Z-M Yang","year":"2013","unstructured":"Yang Z-M, He J-Y, Shao Y-H (2013) Feature selection based on linear twin support vector machines. Proc Comput Sci 17:1039\u20131046","journal-title":"Proc Comput Sci"},{"key":"706_CR31","doi-asserted-by":"publisher","first-page":"174","DOI":"10.1016\/j.neucom.2014.05.040","volume":"144","author":"J Guo","year":"2014","unstructured":"Guo J, Yi P, Wang R, Ye Q, Zhao C (2014) Feature selection for least squares projection twin support vector machine. Neurocomputing 144:174\u2013183","journal-title":"Neurocomputing"},{"key":"706_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.knosys.2014.01.025","volume":"59","author":"L Bai","year":"2014","unstructured":"Bai L, Wang Z, Shao Y-H, Deng N-Y (2014) A novel feature selection method for twin support vector machine. Knowl-Based Syst 59:1\u20138","journal-title":"Knowl-Based Syst"},{"key":"706_CR33","first-page":"1871","volume":"9","author":"R-E Fan","year":"2008","unstructured":"Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871\u20131874","journal-title":"J Mach Learn Res"},{"key":"706_CR34","unstructured":"Nie F, Huang H, Cai X, Ding CH (2010) Efficient and robust feature selection via joint l\n 2,1-norms minimization. Adv Neural Inf Process Syst 1813\u20131821"},{"issue":"4","key":"706_CR35","doi-asserted-by":"publisher","first-page":"499","DOI":"10.1007\/s40305-015-0095-x","volume":"3","author":"Y-J Tian","year":"2015","unstructured":"Tian Y-J, Ju X-C (2015) Nonparallel support vector machine based on one optimization problem for pattern recognition. J Oper Res Soc China 3(4):499\u2013519","journal-title":"J Oper Res Soc China"},{"key":"706_CR36","unstructured":"Platt JC (1999) 12 fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods, pp 185\u2013208"},{"key":"706_CR37","unstructured":"Andersen ED, Andersen KD (2000) The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High performance optimization. Springer, pp 197\u2013232"},{"key":"706_CR38","unstructured":"Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. New York"},{"issue":"1\u20132","key":"706_CR39","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1023\/A:1025667309714","volume":"53","author":"M Robnik-\u0160ikonja","year":"2003","unstructured":"Robnik-\u0160ikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1\u20132):23\u201369","journal-title":"Mach Learn"},{"issue":"4","key":"706_CR40","doi-asserted-by":"publisher","first-page":"1978","DOI":"10.1214\/09-AOS778","volume":"38","author":"J Huang","year":"2010","unstructured":"Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat 38(4):1978\u20132004","journal-title":"Ann Stat"},{"issue":"2","key":"706_CR41","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/j.acra.2011.09.014","volume":"19","author":"IC Moreira","year":"2012","unstructured":"Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236\u2013248","journal-title":"Acad Radiol"},{"key":"706_CR42","doi-asserted-by":"crossref","unstructured":"Moura DC et al (2013) Benchmarking datasets for breast cancer computer-aided diagnosis (CADx). In: Iberoamerican Congress on Pattern Recognition, 2013. Springer, pp 326\u2013333","DOI":"10.1007\/978-3-642-41822-8_41"},{"key":"706_CR43","doi-asserted-by":"crossref","unstructured":"Dhungel N, Carneiro G, Bradley AP (2016) The automated learning of deep features for breast mass classification from mammograms. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016, pp 106\u2013114. Springer","DOI":"10.1007\/978-3-319-46723-8_13"},{"key":"706_CR44","doi-asserted-by":"publisher","first-page":"388","DOI":"10.1016\/j.neucom.2014.10.040","volume":"152","author":"X Liu","year":"2015","unstructured":"Liu X, Zeng Z (2015) A new automatic mass detection method for breast cancer with false positive reduction. Neurocomputing 152:388\u2013402","journal-title":"Neurocomputing"},{"key":"706_CR45","doi-asserted-by":"crossref","unstructured":"Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern (6):610\u2013621","DOI":"10.1109\/TSMC.1973.4309314"},{"key":"706_CR46","doi-asserted-by":"crossref","unstructured":"J\u00e4hne B (2002) Digital image processing. IOP Publishing","DOI":"10.1007\/978-3-662-04781-1"},{"issue":"10","key":"706_CR47","doi-asserted-by":"publisher","first-page":"1032","DOI":"10.1109\/42.887618","volume":"19","author":"NR Mudigonda","year":"2000","unstructured":"Mudigonda NR, Rangayyan RM, Desautels JL (2000) Gradient and texture analysis for the classification of mammographic masses. IEEE Trans Med Imaging 19(10):1032\u20131043","journal-title":"IEEE Trans Med Imaging"},{"issue":"3","key":"706_CR48","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1109\/42.414622","volume":"14","author":"H Li","year":"1995","unstructured":"Li H, Kallergi M, Clarke L, Jain V, Clark R (1995) Markov random field for tumor detection in digital mammography. IEEE Trans Med Imaging 14(3):565\u2013576","journal-title":"IEEE Trans Med Imaging"},{"issue":"3","key":"706_CR49","first-page":"27","volume":"2","author":"C-C Chang","year":"2011","unstructured":"Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27","journal-title":"ACM Trans Intell Syst Technol (TIST)"},{"issue":"8","key":"706_CR50","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","volume":"27","author":"H Peng","year":"2005","unstructured":"Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226\u20131238","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"3","key":"706_CR51","doi-asserted-by":"publisher","first-page":"661","DOI":"10.1109\/TMM.2012.2237023","volume":"15","author":"Y Yang","year":"2013","unstructured":"Yang Y, Ma Z, Hauptmann AG, Sebe N (2013) Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Trans Multimed 15(3):661\u2013669","journal-title":"IEEE Trans Multimed"},{"key":"706_CR52","unstructured":"Metz C (2006) ROCKIT 1.1 B2 (beta version for Windows operating system) [Computer software]. University of Chicago, Chicago, UK. \n http:\/\/www-radiology.uchicago.edu\/krl\/KRL_ROC\/software_index6.htm"},{"key":"706_CR53","unstructured":"Gu Q, Li Z, Han J (2012) Generalized fisher score for feature selection. arXiv preprint: arXiv:1202.3725"},{"key":"#cr-split#-706_CR54.1","unstructured":"Cai X, Nie F, Huang H, Ding C (2011) Multi-class l"},{"key":"#cr-split#-706_CR54.2","unstructured":"2,1-norm support vector machine. In: 2011 IEEE 11th International Conference on Data Mining, 2011, pp 91-100: IEEE"},{"issue":"1\u20133","key":"706_CR55","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1023\/A:1012487302797","volume":"46","author":"I Guyon","year":"2002","unstructured":"Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1\u20133):389\u2013422","journal-title":"Mach Learn"},{"issue":"3","key":"706_CR56","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1148\/radiology.148.3.6878708","volume":"148","author":"JA Hanley","year":"1983","unstructured":"Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148(3):839\u2013843","journal-title":"Radiology"},{"key":"706_CR57","doi-asserted-by":"crossref","unstructured":"Cevikalp H (2016) Best fitting hyperplanes for classification. IEEE Trans Pattern Anal Mach Intell","DOI":"10.1109\/TPAMI.2016.2587647"},{"issue":"10\u201311","key":"706_CR58","doi-asserted-by":"publisher","first-page":"2678","DOI":"10.1016\/j.patcog.2011.03.031","volume":"44","author":"X Peng","year":"2011","unstructured":"Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10\u201311):2678\u20132692","journal-title":"Pattern Recognit"},{"key":"706_CR59","unstructured":"Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods, pp 185\u2013208"}],"container-title":["International Journal of Machine Learning and Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s13042-017-0706-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-017-0706-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-017-0706-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,12,20]],"date-time":"2019-12-20T16:14:36Z","timestamp":1576858476000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s13042-017-0706-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8,12]]},"references-count":60,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2019,1]]}},"alternative-id":["706"],"URL":"https:\/\/doi.org\/10.1007\/s13042-017-0706-4","relation":{},"ISSN":["1868-8071","1868-808X"],"issn-type":[{"value":"1868-8071","type":"print"},{"value":"1868-808X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,8,12]]},"assertion":[{"value":"20 July 2016","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 July 2017","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 August 2017","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}