{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T20:34:23Z","timestamp":1720816463016},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2015,12,22]],"date-time":"2015-12-22T00:00:00Z","timestamp":1450742400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Mach. Learn. & Cyber."],"published-print":{"date-parts":[[2017,6]]},"DOI":"10.1007\/s13042-015-0469-8","type":"journal-article","created":{"date-parts":[[2015,12,22]],"date-time":"2015-12-22T15:23:54Z","timestamp":1450797834000},"page":"915-928","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":25,"title":["Determining appropriate approaches for using data in feature selection"],"prefix":"10.1007","volume":"8","author":[{"given":"Ghadah","family":"Aldehim","sequence":"first","affiliation":[]},{"given":"Wenjia","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,12,22]]},"reference":[{"key":"469_CR1","first-page":"37","volume":"6","author":"DW Aha","year":"1991","unstructured":"Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6:37\u201366","journal-title":"Mach Learn"},{"key":"469_CR2","doi-asserted-by":"crossref","unstructured":"Aldehim G, Wang W (2014) Reliability and effectiveness of cross-validation in feature selection. In: Bramer M, Petridis M (eds) Research and development in intelligent systems XXXI. Springer, pp 179\u2013184","DOI":"10.1007\/978-3-319-12069-0_13"},{"key":"469_CR3","doi-asserted-by":"publisher","first-page":"6562","DOI":"10.1073\/pnas.102102699","volume":"99","author":"C Ambroise","year":"2002","unstructured":"Ambroise C (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci 99:6562\u20136566. doi: 10.1073\/pnas.102102699","journal-title":"Proc Natl Acad Sci"},{"key":"469_CR4","unstructured":"Belanche L, Gonz\u00e1lez F (2011) Review and evaluation of feature selection algorithms in synthetic problems. arXiv:11012320"},{"key":"469_CR5","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1007\/s10115-012-0487-8","volume":"34","author":"V Bol\u00f3n-Canedo","year":"2013","unstructured":"Bol\u00f3n-Canedo V, S\u00e1nchez-Maro\u00f1o N, Alonso-Betanzos A (2013) A review of feature selection methods on synthetic data. Knowl Inf Syst 34:483\u2013519","journal-title":"Knowl Inf Syst"},{"key":"469_CR6","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","volume":"40","author":"G Chandrashekar","year":"2014","unstructured":"Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16\u201328","journal-title":"Comput Electr Eng"},{"key":"469_CR7","doi-asserted-by":"crossref","unstructured":"Gutlein M, Frank E, Hall M, Karwath A (2009) Large-scale attribute selection using wrappers. Paper presented at the computational intelligence and data mining","DOI":"10.1109\/CIDM.2009.4938668"},{"key":"469_CR8","volume-title":"Correlation-based feature selection for machine learning","author":"MA Hall","year":"1999","unstructured":"Hall MA (1999) Correlation-based feature selection for machine learning. The University of Waikato, Hamilton"},{"key":"469_CR9","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1002\/sam.11152","volume":"5","author":"Y Han","year":"2012","unstructured":"Han Y, Yu L (2012) A variance reduction framework for stable feature selection. Stat Anal Data Min 5:428\u2013445","journal-title":"Stat Anal Data Min"},{"key":"469_CR10","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1016\/j.compbiolchem.2010.07.002","volume":"34","author":"Z He","year":"2010","unstructured":"He Z, Yu W (2010) Stable feature selection for biomarker discovery. Comput Biol Chem 34:215\u2013225. doi: 10.1016\/j.compbiolchem.2010.07.002","journal-title":"Comput Biol Chem"},{"key":"469_CR11","unstructured":"John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence, San Francisco, CA, USA. Morgan Kaufmann, pp 338\u2013345"},{"key":"469_CR12","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1007\/s10115-006-0040-8","volume":"12","author":"A Kalousis","year":"2007","unstructured":"Kalousis A, Prados J, Hilario M (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst 12:95\u2013116","journal-title":"Knowl Inf Syst"},{"key":"469_CR13","unstructured":"Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the tenth national conference on artificial intelligence, San Jose, California. AAAI Press, pp 129\u2013129"},{"key":"469_CR14","doi-asserted-by":"publisher","unstructured":"Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of European conference on machine learning Catania, Italy. Springer, pp 171\u2013182. doi: 10.1007\/3-540-57868-4_57","DOI":"10.1007\/3-540-57868-4_57"},{"key":"469_CR15","doi-asserted-by":"crossref","unstructured":"K\u0159\u00ed\u017eek P, Kittler J, Hlav\u00e1\u010d V (2007) Improving stability of feature selection methods. In: Computer analysis of images and patterns. Springer, pp 929\u2013936","DOI":"10.1007\/978-3-540-74272-2_115"},{"key":"469_CR16","unstructured":"Kuncheva LI (2007) A stability index for feature selection. In: Proceedings of the 25th IASTED international multi-conference: artificial intelligence and applications, ACTA Press, pp 390\u2013395"},{"key":"469_CR17","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1177\/117693510600200016","volume":"2","author":"M Lecocke","year":"2006","unstructured":"Lecocke M, Hess K (2006) An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data. Cancer Inform 2:313\u2013327","journal-title":"Cancer Inform"},{"key":"469_CR18","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TKDE.2005.66","volume":"17","author":"H Liu","year":"2005","unstructured":"Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. Knowl Data Eng 17:491\u2013502","journal-title":"Knowl Data Eng"},{"key":"469_CR19","unstructured":"Mej\u00eda-Lavalle M, Sucar E, Arroyo G (2006) Feature selection with a perceptron neural net. In: Proceedings of the international workshop on feature selection for data mining, pp 131\u2013135"},{"key":"469_CR20","first-page":"185","volume-title":"Advances in Kernel methods","author":"JC Platt","year":"1999","unstructured":"Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Smola AJ (ed) Advances in Kernel methods. MIT Press, Cambridge, pp 185\u2013208"},{"key":"469_CR21","volume-title":"C4 5: programs for machine learning","author":"JR Quinlan","year":"1993","unstructured":"Quinlan JR (1993) C4 5: programs for machine learning, vol 1. Massachusetts, Morgan kaufmann"},{"key":"469_CR22","unstructured":"Refaeilzadeh P, Tang L, Liu H (2007) On comparison of feature selection algorithms. In: Proceedings of AAAI workshop on evaluation methods for machine learning II, pp 34\u201339"},{"key":"469_CR23","doi-asserted-by":"crossref","unstructured":"Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Encyclopedia of database systems, Springer, pp 532\u2013538","DOI":"10.1007\/978-0-387-39940-9_565"},{"key":"469_CR24","first-page":"1371","volume":"3","author":"J Reunanen","year":"2003","unstructured":"Reunanen J (2003) Overfitting in making comparisons between variable selection methods. J Mach Learn Res 3:1371\u20131382","journal-title":"J Mach Learn Res"},{"key":"469_CR25","doi-asserted-by":"publisher","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","volume":"23","author":"Y Saeys","year":"2007","unstructured":"Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507\u20132517. doi: 10.1093\/bioinformatics\/btm344","journal-title":"Bioinformatics"},{"key":"469_CR26","doi-asserted-by":"crossref","unstructured":"S\u00e1nchez-Maro\u00f1o N, Alonso-Betanzos A, Tombilla-Sanrom\u00e1n M (2007) Filter methods for feature selection\u2013a comparative study. In: Intelligent data engineering and automated learning-IDEAL 2007, Springer, pp 178\u2013187","DOI":"10.1007\/978-3-540-77226-2_19"},{"key":"469_CR27","doi-asserted-by":"crossref","unstructured":"Singhi SK, Liu H (2006) Feature subset selection bias for classification learning. In: Proceedings of the 23rd international conference on machine learning ACM, pp 849\u2013856","DOI":"10.1145\/1143844.1143951"},{"key":"469_CR28","doi-asserted-by":"publisher","first-page":"1921","DOI":"10.1109\/TPAMI.2010.34","volume":"32","author":"P Somol","year":"2010","unstructured":"Somol P, Novovicova J (2010) Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. Pattern Anal Mach Intell 32:1921\u20131939. doi: 10.1109\/TPAMI.2010.34","journal-title":"Pattern Anal Mach Intell"},{"key":"469_CR29","doi-asserted-by":"publisher","first-page":"80","DOI":"10.2307\/3001968","volume":"1","author":"F Wilcoxon","year":"1945","unstructured":"Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80\u201383. doi: 10.2307\/3001968","journal-title":"Biom Bull"},{"key":"469_CR30","first-page":"1205","volume":"5","author":"L Yu","year":"2004","unstructured":"Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205\u20131224","journal-title":"J Mach Learn Res"}],"container-title":["International Journal of Machine Learning and Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-015-0469-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s13042-015-0469-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-015-0469-8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s13042-015-0469-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,9,13]],"date-time":"2020-09-13T04:02:21Z","timestamp":1599969741000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s13042-015-0469-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,12,22]]},"references-count":30,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2017,6]]}},"alternative-id":["469"],"URL":"https:\/\/doi.org\/10.1007\/s13042-015-0469-8","relation":{},"ISSN":["1868-8071","1868-808X"],"issn-type":[{"value":"1868-8071","type":"print"},{"value":"1868-808X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,12,22]]}}}