{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,10]],"date-time":"2024-04-10T00:36:06Z","timestamp":1712709366274},"reference-count":31,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2024,3,27]],"date-time":"2024-03-27T00:00:00Z","timestamp":1711497600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,3,27]],"date-time":"2024-03-27T00:00:00Z","timestamp":1711497600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Ambient Intell Human Comput"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1007\/s12652-024-04771-5","type":"journal-article","created":{"date-parts":[[2024,3,27]],"date-time":"2024-03-27T07:03:46Z","timestamp":1711523026000},"page":"2543-2556","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Spatiotemporal crowds features extraction of infrared images using neural network"],"prefix":"10.1007","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1071-6331","authenticated-orcid":false,"given":"Anas M.","family":"Al-Oraiqat","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6951-2002","authenticated-orcid":false,"given":"Oleksandr","family":"Drieiev","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8557-3443","authenticated-orcid":false,"given":"Hanna","family":"Drieieva","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8791-0063","authenticated-orcid":false,"given":"Yelyzaveta","family":"Meleshko","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5731-2791","authenticated-orcid":false,"given":"Hazim","family":"AlRawashdeh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0005-6023-4970","authenticated-orcid":false,"given":"Karim A.","family":"Al-Oraiqat","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6119-7626","authenticated-orcid":false,"given":"Yassin M. Y.","family":"Hasan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5093-1581","authenticated-orcid":false,"given":"Noor","family":"Maricar","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5749-8538","authenticated-orcid":false,"given":"Sheroz","family":"Khan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,27]]},"reference":[{"issue":"3","key":"4771_CR1","first-page":"133","volume":"8","author":"AG Abuarafah","year":"2012","unstructured":"Abuarafah AG, Khozium MO, AbdRabou E (2012) Real-time crowd monitoring using infrared thermal video sequences. J Am Sci 8(3):133\u2013140","journal-title":"J Am Sci"},{"key":"4771_CR2","doi-asserted-by":"crossref","unstructured":"Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955","DOI":"10.1109\/NAECON.2018.8556686"},{"key":"4771_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2023\/2039217","volume":"2023","author":"S Balasubramaniam","year":"2023","unstructured":"Balasubramaniam S, Vijesh Joe C, Sivakumar TA, Prasanth A, Satheesh Kumar K, Kavitha V, Dhanaraj RK (2023) Optimization enabled deep learning-based DDoS attack detection in cloud computing. Int J Intell Syst 2023:1\u201316","journal-title":"Int J Intell Syst"},{"key":"4771_CR4","doi-asserted-by":"publisher","DOI":"10.1007\/s00500-023-08453-w","author":"M Braveen","year":"2023","unstructured":"Braveen M, Nachiyappan S, Seetha R et al (2023) ALBAE feature extraction based lung pneumonia and cancer classification. Soft Comput (2023). https:\/\/doi.org\/10.1007\/s00500-023-08453-w","journal-title":"Soft Comput"},{"key":"4771_CR5","doi-asserted-by":"crossref","unstructured":"Bui HM, Lech M, Cheng E, Neville K, Burnett IS (2016) Using grayscale images for object recognition with convolutional-recursive neural network. In: 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE). IEEE, pp 321\u2013325","DOI":"10.1109\/CCE.2016.7562656"},{"key":"4771_CR6","doi-asserted-by":"publisher","unstructured":"Chakraborty MS (2022). Magnitude comparison in canonical signed-digit number system. In: Sengodan T, Murugappan M, Misra S (eds) Advances in electrical and computer technologies. ICAECT 2021. Lecture Notes in Electrical Engineering, vol 881. Springer, Singapore. https:\/\/doi.org\/10.1007\/978-981-19-1111-8_7","DOI":"10.1007\/978-981-19-1111-8_7"},{"key":"4771_CR7","unstructured":"Elshiekh N (2022) Astroworld tragedy: analyzing previous crowd crush case. U. Cent. Fla. Dep\u2019t Legal Stud. LJ 5:153"},{"key":"4771_CR8","volume-title":"Retraction Note to: Spatial and temporal analysis of flood hazard assessment of Cuddalore District, Tamil Nadu, India. Using geospatial techniques","author":"AY Felix","year":"2022","unstructured":"Felix AY, Sasipraba T (2022) Retraction Note to: Spatial and temporal analysis of flood hazard assessment of Cuddalore District, Tamil Nadu, India. Using geospatial techniques. Springer, Berlin"},{"key":"4771_CR9","unstructured":"GitHub (2022) https:\/\/github.com\/jingdao\/IR-detection. Accessed 21 Sept 2023"},{"key":"4771_CR10","doi-asserted-by":"publisher","first-page":"192","DOI":"10.1016\/j.tbs.2020.03.011","volume":"20","author":"VX Gong","year":"2020","unstructured":"Gong VX, Daamen W, Bozzon A, Hoogendoorn SP (2020) Crowd characterization for crowd management using social media data in city events. Travel Behav Soc 20:192\u2013212","journal-title":"Travel Behav Soc"},{"issue":"6","key":"4771_CR11","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1109\/97.923041","volume":"8","author":"YMY Hasan","year":"2001","unstructured":"Hasan YMY, Karam LJ, Falkinburg M, Helwig A, Ronning M (2001) Canonic signed digit Chebyshev FIR filter design. IEEE Signal Process Lett 8(6):167\u2013169","journal-title":"IEEE Signal Process Lett"},{"key":"4771_CR12","doi-asserted-by":"publisher","first-page":"47731","DOI":"10.1109\/ACCESS.2021.3061710","volume":"9","author":"MK Hasan","year":"2021","unstructured":"Hasan MK, Islam S, Sulaiman R, Khan S, Hashim A-HA, Habib S, Islam M, Alyahya S, Ahmed MM, Kamil S et al (2021) Lightweight encryption technique to enhance medical image security on internet of medical things applications. IEEE Access 9:47731\u201347742","journal-title":"IEEE Access"},{"issue":"1","key":"4771_CR13","first-page":"27","volume":"8","author":"LL Henke","year":"2016","unstructured":"Henke LL (2016) Estimating crowd size: a multidisciplinary review and framework for analysis. Bus Stud J 8(1):27\u201338","journal-title":"Bus Stud J"},{"issue":"5","key":"4771_CR14","doi-asserted-by":"publisher","first-page":"1408","DOI":"10.1109\/TCSVT.2018.2837153","volume":"29","author":"D Kang","year":"2018","unstructured":"Kang D, Ma Z, Chan AB (2018) Beyond counting: comparisons of density maps for crowd analysis tasks\u2014counting, detection, and tracking. IEEE Trans Circuits Syst Video Technol 29(5):1408\u20131422","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"key":"4771_CR15","doi-asserted-by":"crossref","unstructured":"Kaul C, Manandhar S, Pears N (2019) Focusnet: an attention-based fully convolutional network for medical image segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, pp 455\u2013458","DOI":"10.1109\/ISBI.2019.8759477"},{"key":"4771_CR16","doi-asserted-by":"crossref","unstructured":"Kavitha M, Roobini S, Prasanth A, Sujaritha M (2023) Systematic view and impact of artificial intelligence in smart healthcare systems, principles, challenges and applications. In: Machine learning and artificial intelligence in healthcare systems, pp 25\u201356","DOI":"10.1201\/9781003265436-2"},{"issue":"14","key":"4771_CR17","doi-asserted-by":"publisher","first-page":"7149","DOI":"10.3390\/app12147149","volume":"12","author":"Z Li","year":"2022","unstructured":"Li Z, Zhang H, Li Z, Ren Z (2022) Residual-attention unet++: a nested residual-attention u-net for medical image segmentation. Appl Sci 12(14):7149","journal-title":"Appl Sci"},{"issue":"3","key":"4771_CR18","doi-asserted-by":"publisher","first-page":"666","DOI":"10.1109\/TMM.2019.2932615","volume":"22","author":"Q Liu","year":"2019","unstructured":"Liu Q, He Z, Li X, Zheng Y (2019) Ptb-tir: a thermal infrared pedestrian tracking benchmark. IEEE Trans Multimed 22(3):666\u2013675","journal-title":"IEEE Trans Multimed"},{"key":"4771_CR19","doi-asserted-by":"crossref","unstructured":"Mahmood M, Jalal A, Sidduqi M (2018) Robust spatio-temporal features for human interaction recognition via artificial neural network. In: 2018 International conference on Frontiers of Information Technology (FIT). IEEE, pp 218\u2013223","DOI":"10.1109\/FIT.2018.00045"},{"issue":"1","key":"4771_CR20","doi-asserted-by":"publisher","first-page":"34","DOI":"10.3390\/s20010034","volume":"20","author":"J Park","year":"2020","unstructured":"Park J, Chen J, Cho YK, Kang DY, Son BJ (2020) CNN-Based person detection using infrared images for night-time intrusion warning systems. Sensors 20(1):34. https:\/\/doi.org\/10.3390\/s20010034","journal-title":"Sensors"},{"key":"4771_CR21","doi-asserted-by":"publisher","first-page":"7107","DOI":"10.1007\/s12652-020-02378-0","volume":"12","author":"M Poonkodi","year":"2021","unstructured":"Poonkodi M, Vadivu G (2021) Action recognition using correlation of temporal difference frame (CTDF)\u2014an algorithmic approach. J Ambient Intell Humaniz Comput 12:7107\u20137120","journal-title":"J Ambient Intell Humaniz Comput"},{"key":"4771_CR22","doi-asserted-by":"publisher","first-page":"5225","DOI":"10.1007\/s12652-020-02000-3","volume":"12","author":"N Priyadharsini","year":"2021","unstructured":"Priyadharsini N, Chitra D (2021) A kernel support vector machine based anomaly detection using spatio-temporal motion pattern models in extremely crowded scenes. J Ambient Intell Hum-Ized Comput 12:5225\u20135234","journal-title":"J Ambient Intell Hum-Ized Comput"},{"issue":"7","key":"4771_CR23","doi-asserted-by":"publisher","first-page":"9404","DOI":"10.1109\/TITS.2021.3119855","volume":"23","author":"K Rezaee","year":"2021","unstructured":"Rezaee K, Mousavirad SJ, Khosravi MR, Moghimi MK, Heidari M (2021) An autonomous uav-assisted distance-aware crowd sensing platform using deep shufflenet transfer learning. IEEE Trans Intell Transp Syst 23(7):9404\u20139413","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"4771_CR24","doi-asserted-by":"crossref","unstructured":"Srinivasan A, Bharadwaj A, Sathyan M, Natarajan S (2020) Optimization of image embeddings for few shot learning. arXiv preprint arXiv:2004.02034","DOI":"10.5220\/0010243202360242"},{"key":"4771_CR25","unstructured":"The Federal Bureau of Investigation (2015) https:\/\/vault.fbi.gov\/protests-in-baltimore-maryland-2015\/unedited-versions-of-video-surveillance-footage. Accessed 21 Sept 2023"},{"key":"4771_CR26","doi-asserted-by":"crossref","unstructured":"Trumble M, Gilbert A, Hilton A, Collomosse J (2016) Deep convolutional networks for marker-less human pose estimation from multiple views. In: Proceedings of the 13th European Conference on Visual Media Production (CVMP 2016), pp 1\u20139","DOI":"10.1145\/2998559.2998565"},{"issue":"7","key":"4771_CR27","first-page":"3421","volume":"44","author":"J Wang","year":"2021","unstructured":"Wang J, Hu X (2021) Convolutional neural networks with gated recurrent connections. IEEE Trans Pattern Anal Mach Intell 44(7):3421\u20133435","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"1","key":"4771_CR28","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1109\/TPAMI.2018.2875002","volume":"42","author":"Q Wang","year":"2018","unstructured":"Wang Q, Chen M, Nie F, Li X (2018) Detecting coherent groups in crowd scenes by multiview clustering. IEEE Trans Pattern Anal Mach Intell 42(1):46\u201358","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"4771_CR29","unstructured":"Wang S, Hu S-Y, Cheah E, Wang X, Wang J, Chen L, Baikpour M, Ozturk A, Li Q, Chou S-H et al (2020) U-net using stacked dilated convolutions for medical image segmentation. arXiv preprint arXiv:2004.03466"},{"key":"4771_CR30","doi-asserted-by":"publisher","first-page":"167939","DOI":"10.1109\/ACCESS.2020.3020475","volume":"8","author":"DP Waters","year":"2020","unstructured":"Waters DP, Wang L, Wang C, Sun Z, Chen S (2020) An improved dice loss for pneumothorax segmentation by mining the information of negative areas. IEEE Access 8:167939\u2013167949","journal-title":"IEEE Access"},{"key":"4771_CR31","doi-asserted-by":"crossref","unstructured":"Wu X, Liang G, Lee KK, Xu Y (2006) Crowd density estimation using texture analysis and learning. In: 2006 IEEE international conference on robotics and biomimetics. IEEE, pp 214\u2013219","DOI":"10.1109\/ROBIO.2006.340379"}],"container-title":["Journal of Ambient Intelligence and Humanized Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-024-04771-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12652-024-04771-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-024-04771-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,9]],"date-time":"2024-04-09T18:20:54Z","timestamp":1712686854000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12652-024-04771-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,27]]},"references-count":31,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2024,4]]}},"alternative-id":["4771"],"URL":"https:\/\/doi.org\/10.1007\/s12652-024-04771-5","relation":{},"ISSN":["1868-5137","1868-5145"],"issn-type":[{"value":"1868-5137","type":"print"},{"value":"1868-5145","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,3,27]]},"assertion":[{"value":"5 April 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 February 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 March 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that there are no conflicts of interest regarding the publication of this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}