{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,19]],"date-time":"2024-08-19T11:09:48Z","timestamp":1724065788440},"reference-count":78,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2022,2,3]],"date-time":"2022-02-03T00:00:00Z","timestamp":1643846400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,2,3]],"date-time":"2022-02-03T00:00:00Z","timestamp":1643846400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Ambient Intell Human Comput"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1007\/s12652-022-03717-z","type":"journal-article","created":{"date-parts":[[2022,2,3]],"date-time":"2022-02-03T04:40:34Z","timestamp":1643863234000},"page":"11481-11495","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":20,"title":["Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework"],"prefix":"10.1007","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6738-8562","authenticated-orcid":false,"given":"Farid","family":"Kadri","sequence":"first","affiliation":[]},{"given":"Abdelkader","family":"Dairi","sequence":"additional","affiliation":[]},{"given":"Fouzi","family":"Harrou","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Sun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,2,3]]},"reference":[{"key":"3717_CR1","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.jbi.2015.09.015","volume":"58","author":"AB Abacha","year":"2015","unstructured":"Abacha AB, Faisal CM, Mahbub KA, Yassine M, Alberto L, Pierre Z (2015) Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification. J Biomed Inform 58:122\u2013132","journal-title":"J Biomed Inform"},{"issue":"7","key":"3717_CR2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-016-0527-0","volume":"40","author":"M Afilal","year":"2016","unstructured":"Afilal M, Yalaoui F, Dugardin F, Amodeo L, Laplanche D, Blua P (2016) Forecasting the emergency department patients flow. J Med Syst 40(7):1\u201318","journal-title":"J Med Syst"},{"key":"3717_CR4","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1007\/978-1-4302-5990-9_4","volume-title":"Support vector regression in efficient learning machines","author":"M Awad","year":"2015","unstructured":"Awad M, Khanna R (2015) Support vector regression in efficient learning machines. Apress, Berkeley, pp 67\u201380"},{"issue":"2","key":"3717_CR3","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1177\/0951484817696212","volume":"30","author":"A Awad","year":"2017","unstructured":"Awad A, Bader-El-Den M, McNicholas J (2017) Patient length of stay and mortality prediction: a survey. Health Serv Manag Res 30(2):105\u2013120","journal-title":"Health Serv Manag Res"},{"issue":"8","key":"3717_CR5","first-page":"4705","volume":"7","author":"IB Aydilek","year":"2012","unstructured":"Aydilek IB, Arslan A (2012) A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks. Int J Innov Comput Inf Control 7(8):4705\u20134717","journal-title":"Int J Innov Comput Inf Control"},{"issue":"6","key":"3717_CR6","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1007\/s11739-019-02265-3","volume":"15","author":"S Bacchi","year":"2020","unstructured":"Bacchi S, Samuel G, Yiran T, Ivana C, Joy C, Toby G, Menon David K, Jim J, Timothy K, Simon K (2020a) Prediction of general medical admission length of stay with natural language processing and deep learning: a pilot study. Int Emerg Med 15(6):989\u2013995","journal-title":"Int Emerg Med"},{"key":"3717_CR7","doi-asserted-by":"crossref","unstructured":"Bacchi S, Tan Y, Oakden-Rayner L, Jannes J, Kleinig T, Koblar S (2020b) Machine learning in the prediction of medical inpatient length of stay. Int Med J","DOI":"10.1111\/imj.14962"},{"key":"3717_CR8","unstructured":"Bejaoui M, Bergonzoni A, Boisgu\u00e9rin B, Boussa\u00efd N, Dahmouh A, Dennevault C, Mauro L, Morin S, Pereira E, de Peretti C et al (2018) Les \u00e9tablissements de sant\u00e9: \u00e9dition 2018"},{"issue":"3","key":"3717_CR9","doi-asserted-by":"crossref","first-page":"19","DOI":"10.4018\/IJISSS.2019070102","volume":"11","author":"S Benbelkacem","year":"2019","unstructured":"Benbelkacem S, Kadri F, Atmani B, Chaabane S (2019) Machine learning for emergency department management. Int J Inf Syst Serv Sector (IJISSS) 11(3):19\u201336","journal-title":"Int J Inf Syst Serv Sector (IJISSS)"},{"key":"3717_CR10","volume":"97","author":"J-J Beunza","year":"2019","unstructured":"Beunza J-J, Enrique P, Ester G-O, Gema V, Emilia C, Gergana K, Cristian H, Landecho Manuel F (2019) Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J Biomed Inform 97:103257","journal-title":"J Biomed Inform"},{"key":"3717_CR11","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.cie.2014.04.016","volume":"78","author":"P Bhattacharjee","year":"2014","unstructured":"Bhattacharjee P, Ray PK (2014) Patient flow modelling and performance analysis of healthcare delivery processes in hospitals: a review and reflections. Comput Ind Eng 78:299\u2013312","journal-title":"Comput Ind Eng"},{"key":"3717_CR12","doi-asserted-by":"crossref","unstructured":"Boyle A, Beniuk K, Higginson I, Atkinson P (2012) Emergency department crowding: time for interventions and policy evaluations. Emerg Med Int 2012","DOI":"10.1155\/2012\/838610"},{"issue":"1","key":"3717_CR13","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1186\/1472-6947-14-26","volume":"14","author":"EM Carter","year":"2014","unstructured":"Carter EM, Potts HWW (2014) Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med Inform Decis Mak 14(1):26","journal-title":"BMC Med Inform Decis Mak"},{"key":"3717_CR15","doi-asserted-by":"crossref","first-page":"44441","DOI":"10.1109\/ACCESS.2019.2908843","volume":"7","author":"W-J Chang","year":"2019","unstructured":"Chang W-J, Chen L-B, Hsu C-H, Lin C-P, Yang T-C (2019) A deep learning-based intelligent medicine recognition system for chronic patients. IEEE Access 7:44441\u201344458","journal-title":"IEEE Access"},{"key":"3717_CR14","doi-asserted-by":"crossref","first-page":"134826","DOI":"10.1109\/ACCESS.2020.3010847","volume":"8","author":"W-J Chang","year":"2020","unstructured":"Chang W-J, Chen L-B, Chen M-C, Chiu Y-C, Lin J-Y (2020) ScalpEye: a deep learning-based scalp hair inspection and diagnosis system for scalp health. IEEE Access 8:134826\u2013134837","journal-title":"IEEE Access"},{"key":"3717_CR16","volume":"137","author":"Y Chen","year":"2019","unstructured":"Chen Y, Kaiming B, Wu C-HJ, David B-A (2019) A new evidence-based optimal control in healthcare delivery: a better clinical treatment management for septic patients. Comput Ind Eng 137:106010","journal-title":"Comput Ind Eng"},{"issue":"1","key":"3717_CR17","volume":"12","author":"C Chung-Hsien","year":"2017","unstructured":"Chung-Hsien C, Hsiu-Hsi C, Shu-Hui C, Petrus T, Shin-Liang P, Ming-Fang YA, Te-Fa C (2017) Predicting length of stay among patients discharged from the emergency department-using an accelerated failure time model. PLoS One 12(1):e0165756","journal-title":"PLoS One"},{"key":"3717_CR18","doi-asserted-by":"crossref","unstructured":"Clancy CM (2007) Emergency departments in crisis: opportunities for research. Health Serv Res 42(1 Pt 1):xiii","DOI":"10.1111\/j.1475-6773.2006.00692.x"},{"issue":"1","key":"3717_CR19","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/MSP.2017.2765202","volume":"35","author":"A Creswell","year":"2018","unstructured":"Creswell A, Tom W, Vincent D, Kai A, Biswa S, Bharath Anil A (2018) Generative adversarial networks: an overview. IEEE Signal Process Mag 35(1):53\u201365","journal-title":"IEEE Signal Process Mag"},{"key":"3717_CR20","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.ijcard.2019.01.046","volume":"288","author":"A Daghistani Tahani","year":"2019","unstructured":"Daghistani Tahani A, Radwa E, Sherif S, Ahmed Amjad M, Abdullah AT, Al-Mallah Mouaz H (2019) Predictors of in-hospital length of stay among cardiac patients: a machine learning approach. Int J Cardiol 288:140\u2013147","journal-title":"Int J Cardiol"},{"key":"3717_CR21","doi-asserted-by":"crossref","unstructured":"Di X, Zhang H, Patel VM (2018) Polarimetric thermal to visible face verification via attribute preserved synthesis. In: 2018 IEEE 9th international conference on biometrics theory, applications and systems (BTAS). IEEE, pp 1\u201310","DOI":"10.1109\/BTAS.2018.8698554"},{"key":"3717_CR22","doi-asserted-by":"crossref","unstructured":"Elbattah M, Molloy O (2016)Using machine learning to predict length of stay and discharge destination for hip-fracture patients. In: Proceedings of SAI intelligent systems conference. Springer, pp 207\u2013217","DOI":"10.1007\/978-3-319-56994-9_15"},{"key":"3717_CR23","doi-asserted-by":"crossref","unstructured":"Gentimis T, Alnaser AJ, Durante A, Cook K, Steele R (2017) Predicting hospital length of stay using neural networks on mimic iii data. In: 2017 IEEE 15th intl conf on dependable, autonomic and secure computing, 15th intl conf on pervasive intelligence and computing, 3rd intl conf on big data intelligence and computing and cyber science and technology congress (DASC\/PiCom\/DataCom\/CyberSciTech). IEEE, pp 1194\u20131201","DOI":"10.1109\/DASC-PICom-DataCom-CyberSciTec.2017.191"},{"key":"3717_CR24","unstructured":"Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv:1406.2661"},{"key":"3717_CR25","doi-asserted-by":"crossref","first-page":"1186","DOI":"10.1016\/j.energy.2018.07.090","volume":"160","author":"Z Guo","year":"2018","unstructured":"Guo Z, Zhou K, Zhang X, Yang S (2018) A deep learning model for short-term power load and probability density forecasting. Energy 160:1186\u20131200","journal-title":"Energy"},{"issue":"17","key":"3717_CR27","doi-asserted-by":"crossref","first-page":"7222","DOI":"10.1109\/JSEN.2018.2852001","volume":"18","author":"F Harrou","year":"2018","unstructured":"Harrou F, Dairi A, Sun Y, Kadri F (2018) Detecting abnormal ozone measurements with a deep learning-based strategy. IEEE Sens J 18(17):7222\u20137232","journal-title":"IEEE Sens J"},{"key":"3717_CR26","volume":"139","author":"F Harrou","year":"2020","unstructured":"Harrou F, Dairi A, Kadri F, Sun Y (2020a) Forecasting emergency department overcrowding: a deep learning framework. Chaos Solitons 139:110247","journal-title":"Chaos Solitons"},{"key":"3717_CR29","unstructured":"Harrou F, Sun Y, Hering AS, Madakyaru M et al (2020b) Statistical process monitoring using advanced data-driven and deep learning approaches: theory and practical applications. Elsevier"},{"issue":"2","key":"3717_CR28","doi-asserted-by":"crossref","first-page":"146045822110216","DOI":"10.1177\/14604582211021649","volume":"27","author":"F Harrou","year":"2021","unstructured":"Harrou F, Kadri F, Sun Y, Khadraoui S (2021) Monitoring patient flow in a hospital emergency department: arma-based nonparametric glrt scheme. Health Inform J 27(2):14604582211021648","journal-title":"Health Inform J"},{"key":"3717_CR30","volume":"108","author":"L He","year":"2021","unstructured":"He L, Chalil MS, Greg S, Khasawneh Mohammad T (2021) Neural network-based multi-task learning for inpatient flow classification and length of stay prediction. Appl Soft Comput 108:107483","journal-title":"Appl Soft Comput"},{"issue":"7","key":"3717_CR31","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"E Hinton Geoffrey","year":"2006","unstructured":"Hinton Geoffrey E, Simon O, Yee-Whye T (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527\u20131554","journal-title":"Neural Comput"},{"issue":"2","key":"3717_CR32","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.annemergmed.2008.03.014","volume":"52","author":"NR Hoot","year":"2008","unstructured":"Hoot NR, Dominik A (2008) Systematic review of emergency department crowding: causes, effects, and solutions. Ann Emerg Med 52(2):126\u2013136","journal-title":"Ann Emerg Med"},{"key":"3717_CR33","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.jbi.2016.09.012","volume":"64","author":"D Ichikawa","year":"2016","unstructured":"Ichikawa D, Saito T, Ujita W, Oyama H (2016) How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach. J Biomed Inform 64:20\u201324","journal-title":"J Biomed Inform"},{"issue":"4","key":"3717_CR34","doi-asserted-by":"crossref","first-page":"253","DOI":"10.5847\/wjem.j.1920-8642.2011.04.002","volume":"2","author":"H Jun","year":"2011","unstructured":"Jun H, Xiang-yu H, Sam T, Patrick Jennifer R, Fitz GG (2011) Demand for hospital emergency departments: a conceptual understanding. World J Emerg Med 2(4):253","journal-title":"World J Emerg Med"},{"issue":"1","key":"3717_CR35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1504\/IJDS.2020.109497","volume":"5","author":"F Kadri","year":"2020","unstructured":"Kadri F, Abdennbi K (2020) Rnn-based deep-learning approach to forecasting hospital system demands: application to an emergency department. Int J Data Sci 5(1):1\u201325","journal-title":"Int J Data Sci"},{"key":"3717_CR36","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.simpat.2013.12.004","volume":"42","author":"F Kadri","year":"2014","unstructured":"Kadri F, Chaabane S, Tahon C (2014a) A simulation-based decision support system to prevent and predict strain situations in emergency department systems. Simul Model Pract Theory 42:32\u201352","journal-title":"Simul Model Pract Theory"},{"issue":"9","key":"3717_CR37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-014-0107-0","volume":"38","author":"F Kadri","year":"2014","unstructured":"Kadri F, Harrou F, Chaabane S, Tahon C (2014b) Time series modelling and forecasting of emergency department overcrowding. J Med Syst 38(9):1\u201320","journal-title":"J Med Syst"},{"key":"3717_CR38","doi-asserted-by":"crossref","unstructured":"Kadri F, Harrou F, Sun Y (2017) A multivariate time series approach to forecasting daily attendances at hospital emergency department. In: 2017 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1\u20136","DOI":"10.1109\/SSCI.2017.8280850"},{"issue":"13","key":"3717_CR39","doi-asserted-by":"crossref","first-page":"1300","DOI":"10.1056\/NEJMp068194","volume":"355","author":"AL Kellermann","year":"2006","unstructured":"Kellermann AL (2006) Crisis in the emergency department. N Engl J Med 355(13):1300","journal-title":"N Engl J Med"},{"key":"3717_CR40","doi-asserted-by":"crossref","unstructured":"Kretz T, M\u00fcller K-R, Schaeffter T, Elster C (2020) Mammography image quality assurance using deep learning. IEEE Trans Biomed Eng","DOI":"10.1109\/TBME.2020.2983539"},{"key":"3717_CR41","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2020.110059","volume":"139","author":"S Lalmuanawma","year":"2020","unstructured":"Lalmuanawma S, Hussain J, Chhakchhuak L (2020) Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: a review. Chaos Solitons Fractals 139:110059","journal-title":"Chaos Solitons Fractals"},{"key":"3717_CR42","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.jbi.2018.10.008","volume":"88","author":"JS Layeghian","year":"2018","unstructured":"Layeghian JS, Mehdi SM, Hassan A (2018) Toward analyzing and synthesizing previous research in early prediction of cardiac arrest using machine learning based on a multi-layered integrative framework. J Biomed Inform 88:70\u201389","journal-title":"J Biomed Inform"},{"issue":"11","key":"3717_CR43","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278\u20132324","journal-title":"Proc IEEE"},{"key":"3717_CR44","doi-asserted-by":"crossref","unstructured":"Ledig C, Theis L, Husz\u00e1r F, Caballero J, Cunningham An, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681\u20134690","DOI":"10.1109\/CVPR.2017.19"},{"key":"3717_CR45","doi-asserted-by":"crossref","unstructured":"Li J-S, Tian Y, Liu Y-F, Shu T, Liang M-H (2013) Applying a BP neural network model to predict the length of hospital stay. In: International conference on health information science. Springer, pp 18\u201329","DOI":"10.1007\/978-3-642-37899-7_2"},{"issue":"2","key":"3717_CR46","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1109\/TNSRE.2020.2966249","volume":"28","author":"Y Liao","year":"2020","unstructured":"Liao Y, Vakanski A, Xian M (2020) A deep learning framework for assessing physical rehabilitation exercises. IEEE Trans Neural Syst Rehabil Eng 28(2):468\u2013477","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"key":"3717_CR48","doi-asserted-by":"crossref","unstructured":"Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 eighth IEEE international conference on data mining. IEEE, pp 413\u2013422","DOI":"10.1109\/ICDM.2008.17"},{"issue":"3","key":"3717_CR47","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1109\/JBHI.2019.2919916","volume":"24","author":"L Liu","year":"2019","unstructured":"Liu L, Jiawei X, Huan Y, Zou Z, Yeh S-C, Zheng L-R (2019) A smart dental health-iot platform based on intelligent hardware, deep learning, and mobile terminal. IEEE J Biomed Health Inform 24(3):898\u2013906","journal-title":"IEEE J Biomed Health Inform"},{"issue":"2","key":"3717_CR49","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.zemedi.2018.11.002","volume":"29","author":"AS Lundervold","year":"2019","unstructured":"Lundervold AS (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102\u2013127","journal-title":"Z Med Phys"},{"key":"3717_CR50","volume":"186","author":"X Ma","year":"2020","unstructured":"Ma X, Si Y, Wang Z, Wang Y (2020) Length of stay prediction for icu patients using individualized single classification algorithm. Comput Methods Programs Biomed 186:105224","journal-title":"Comput Methods Programs Biomed"},{"issue":"2","key":"3717_CR51","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1016\/j.ejor.2018.10.024","volume":"274","author":"F Mai","year":"2019","unstructured":"Mai F, Tian S, Lee C, Ma L (2019) Deep learning models for bankruptcy prediction using textual disclosures. Eur J Oper Res 274(2):743\u2013758","journal-title":"Eur J Oper Res"},{"key":"3717_CR52","doi-asserted-by":"crossref","first-page":"72726","DOI":"10.1109\/ACCESS.2019.2920448","volume":"7","author":"KN Mefraz","year":"2019","unstructured":"Mefraz KN, Nabila A, Marcia H (2019) Transfer learning with intelligent training data selection for prediction of Alzheimer\u2019s disease. IEEE Access 7:72726\u201372735","journal-title":"IEEE Access"},{"key":"3717_CR53","doi-asserted-by":"crossref","unstructured":"Mekhaldi RN, Caulier P, Chaabane S, Chraibi A, Piechowiak S (2020)Using machine learning models to predict the length of stay in a hospital setting. In: World conference on information systems and technologies. Springer, pp 202\u2013211","DOI":"10.1007\/978-3-030-45688-7_21"},{"key":"3717_CR54","unstructured":"Pendharkar PC, Khurana H (2014) Machine learning techniques for predicting hospital length of stay in Pennsylvania federal and specialty hospitals. Int J Comput Sci Appl 11(3)"},{"key":"3717_CR55","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.jbi.2017.04.001","volume":"69","author":"T Pham","year":"2017","unstructured":"Pham T, Tran T, Phung D, Venkatesh S (2017) Predicting healthcare trajectories from medical records: a deep learning approach. J Biomed Inform 69:218\u2013229","journal-title":"J Biomed Inform"},{"key":"3717_CR56","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.ejrad.2019.02.038","volume":"114","author":"L Saba","year":"2019","unstructured":"Saba L, Biswas M, Venkatanareshbabu K, Cuadrado GE, Suri HS, Reddy ED, Toma\u017e O, Laird JR, Khanna NN, Sophie M et al (2019) The present and future of deep learning in radiology. Eur J Radiol 114:14\u201324","journal-title":"Eur J Radiol"},{"key":"3717_CR57","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2019.101788","volume":"103","author":"AK Sangaiah","year":"2020","unstructured":"Sangaiah AK, Maheswari A, Gui-Bin B (2020) An intelligent learning approach for improving ecg signal classification and arrhythmia analysis. Artif Intell Med 103:101788","journal-title":"Artif Intell Med"},{"issue":"2","key":"3717_CR58","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1007\/s11739-017-1784-8","volume":"13","author":"N Schwartz","year":"2018","unstructured":"Schwartz N, Sakhnini A, Bisharat N (2018) Predictive modeling of inpatient mortality in departments of internal medicine. Int Emerg Med 13(2):205\u2013211","journal-title":"Int Emerg Med"},{"issue":"6","key":"3717_CR59","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1111\/1742-6723.13145","volume":"30","author":"J Stewart","year":"2018","unstructured":"Stewart J, Sprivulis P, Dwivedi G (2018) Artificial intelligence and machine learning in emergency medicine. Emerg Med Australas 30(6):870\u2013874","journal-title":"Emerg Med Australas"},{"key":"3717_CR60","doi-asserted-by":"crossref","unstructured":"Stone K, Zwiggelaar R, Jones P, Parthal\u00e1in NM (2019) Predicting hospital length of stay for accident and emergency admissions. In: UK workshop on computational intelligence. Springer, pp 283\u2013295","DOI":"10.1007\/978-3-030-29933-0_24"},{"key":"3717_CR61","volume-title":"Data science: concepts and practice","author":"K Vijay","year":"2018","unstructured":"Vijay K, Bala D (2018) Data science: concepts and practice. Morgan Kaufmann, Burlington"},{"key":"3717_CR62","unstructured":"Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010)Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12)"},{"key":"3717_CR63","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1016\/j.cie.2019.01.019","volume":"128","author":"F Visintin","year":"2019","unstructured":"Visintin F, Caprara C, Puggelli F (2019) Experimental design and simulation applied to a paediatric emergency department: a case study. Comput Ind Eng 128:755\u2013781","journal-title":"Comput Ind Eng"},{"key":"3717_CR64","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.cie.2017.06.023","volume":"110","author":"G Wachtel","year":"2017","unstructured":"Wachtel G, Elalouf A (2017) Using the \u201cfloating patients\u2019\u2019 method to balance crowding between the hospital emergency department and other departments. Comput Ind Eng 110:289\u2013296","journal-title":"Comput Ind Eng"},{"issue":"11","key":"3717_CR65","doi-asserted-by":"crossref","first-page":"2086","DOI":"10.1109\/TNSRE.2018.2876129","volume":"26","author":"P Wang","year":"2018","unstructured":"Wang P, Jiang A, Liu X, Shang J, Zhang L (2018) Lstm-based eeg classification in motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng 26(11):2086\u20132095","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"key":"3717_CR66","doi-asserted-by":"crossref","first-page":"147635","DOI":"10.1109\/ACCESS.2020.3016062","volume":"8","author":"W Wang","year":"2020","unstructured":"Wang W, Lee J, Harrou F, Sun Y (2020) Early detection of Parkinson\u2019s disease using deep learning and machine learning. IEEE Access 8:147635\u2013147646","journal-title":"IEEE Access"},{"key":"3717_CR67","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.cogsys.2018.08.023","volume":"52","author":"R Wason","year":"2018","unstructured":"Wason R (2018) Deep learning: evolution and expansion. Cogn Syst Res 52:701\u2013708","journal-title":"Cogn Syst Res"},{"issue":"4","key":"3717_CR68","doi-asserted-by":"crossref","first-page":"796","DOI":"10.1109\/JAS.2020.1003533","volume":"8","author":"D Wu","year":"2020","unstructured":"Wu D, Luo X (2020) Robust latent factor analysis for precise representation of high-dimensional and sparse data. IEEE\/CAA J Autom Sin 8(4):796\u2013805","journal-title":"IEEE\/CAA J Autom Sin"},{"key":"3717_CR69","unstructured":"Wu D, Luo X, Shang M, He Y, Wang Gu, Zhou M (2019) A deep latent factor model for high-dimensional and sparse matrices in recommender systems. IEEE Trans Syst Man Cybern Syst"},{"key":"3717_CR70","doi-asserted-by":"crossref","unstructured":"Wu D, Luo X, Shang M, He Y, Wang G, Wu X (2020) A data-characteristic-aware latent factor model for web services qos prediction. IEEE Trans Knowl Data Eng","DOI":"10.1109\/TKDE.2020.3014302"},{"key":"3717_CR71","unstructured":"Wu D, Shang M, Luo X, Wang Z (2021) An l$$_{1}$$-and-l$$_{2}$$-norm-oriented latent factor model for recommender systems. IEEE Trans Neural Netw Learn Syst"},{"issue":"7","key":"3717_CR72","doi-asserted-by":"crossref","first-page":"6429","DOI":"10.1109\/JIOT.2020.2985082","volume":"7","author":"Z Xiaokang","year":"2020","unstructured":"Xiaokang Z, Wei L, Kevin I, Kai W, Hao W, Yang Laurence T, Qun J (2020) Deep learning enhanced human activity recognition for internet of healthcare things. IEEE Internet Things J 7(7):6429\u20136438","journal-title":"IEEE Internet Things J"},{"key":"3717_CR73","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1109\/ACCESS.2019.2961964","volume":"8","author":"W Xue","year":"2019","unstructured":"Xue W, Li Q, Xue Q (2019) Text detection and recognition for images of medical laboratory reports with a deep learning approach. IEEE Access 8:407\u2013416","journal-title":"IEEE Access"},{"key":"3717_CR74","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.jbi.2018.09.009","volume":"86","author":"Y Xue","year":"2018","unstructured":"Xue Y, Liang H, Norbury J, Gillis R, Killingworth B (2018) Predicting the risk of acute care readmissions among rehabilitation inpatients: a machine learning approach. J Biomed Inform 86:143\u2013148","journal-title":"J Biomed Inform"},{"issue":"1","key":"3717_CR75","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/JBHI.2018.2871678","volume":"23","author":"Y Yuan","year":"2018","unstructured":"Yuan Y, Xun G, Jia K, Zhang A (2018) A multi-view deep learning framework for eeg seizure detection. IEEE J Biomed Health Inform 23(1):83\u201394","journal-title":"IEEE J Biomed Health Inform"},{"key":"3717_CR76","doi-asserted-by":"crossref","unstructured":"Yucesan M, Mete S, Serin F, Celik E, Gul M (2020) NARX neural networks model for forecasting daily patient arrivals in the emergency department. In: Computational intelligence and soft computing applications in healthcare management science. IGI Global, pp 1\u201318","DOI":"10.4018\/978-1-7998-2581-4.ch001"},{"key":"3717_CR77","doi-asserted-by":"crossref","unstructured":"Zhang Z, Xie Y, Yang L (2018) Photographic text-to-image synthesis with a hierarchically-nested adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6199\u20136208","DOI":"10.1109\/CVPR.2018.00649"},{"issue":"9","key":"3717_CR78","doi-asserted-by":"crossref","first-page":"5046","DOI":"10.1109\/TGRS.2018.2805286","volume":"56","author":"L Zhu","year":"2018","unstructured":"Zhu L, Yushi C, Pedram G, Atli BJ (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046\u20135063","journal-title":"IEEE Trans Geosci Remote Sens"}],"container-title":["Journal of Ambient Intelligence and Humanized Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-022-03717-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s12652-022-03717-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s12652-022-03717-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,24]],"date-time":"2023-07-24T16:19:39Z","timestamp":1690215579000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s12652-022-03717-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,3]]},"references-count":78,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["3717"],"URL":"https:\/\/doi.org\/10.1007\/s12652-022-03717-z","relation":{},"ISSN":["1868-5137","1868-5145"],"issn-type":[{"value":"1868-5137","type":"print"},{"value":"1868-5145","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,3]]},"assertion":[{"value":"27 March 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 January 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 February 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}